Suppr超能文献

利用手持扫描仪自动测量种子的几何参数。

Automatic Measurement of Seed Geometric Parameters Using a Handheld Scanner.

机构信息

School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China.

Special Robot Application Technology Research Institute, Chengdu 611730, China.

出版信息

Sensors (Basel). 2024 Sep 22;24(18):6117. doi: 10.3390/s24186117.

Abstract

Seed geometric parameters are important in yielding trait scorers, quantitative trait loci, and species recognition and classification. A novel method for automatic measurement of three-dimensional seed phenotypes is proposed. First, a handheld three-dimensional (3D) laser scanner is employed to obtain the seed point cloud data in batches. Second, a novel point cloud-based phenotyping method is proposed to obtain a single-seed 3D model and extract 33 phenotypes. It is connected by an automatic pipeline, including single-seed segmentation, pose normalization, point cloud completion by an ellipse fitting method, Poisson surface reconstruction, and automatic trait estimation. Finally, two statistical models (one using 11 size-related phenotypes and the other using 22 shape-related phenotypes) based on the principal component analysis method are built. A total of 3400 samples of eight kinds of seeds with different geometrical shapes are tested. Experiments show: (1) a single-seed 3D model can be automatically obtained with 0.017 mm point cloud completion error; (2) 33 phenotypes can be automatically extracted with high correlation compared with manual measurements (correlation coefficient () above 0.9981 for size-related phenotypes and above 0.8421 for shape-related phenotypes); and (3) two statistical models are successfully built to achieve seed shape description and quantification.

摘要

种子的几何参数在产量性状评分、数量性状基因座和物种识别与分类中非常重要。提出了一种用于自动测量三维种子表型的新方法。首先,使用手持式三维(3D)激光扫描仪分批获取种子点云数据。其次,提出了一种新颖的基于点云的表型测量方法,以获取单个种子的 3D 模型并提取 33 个表型。它通过自动流水线连接,包括单种子分割、姿态归一化、椭圆拟合方法的点云补全、泊松表面重建和自动特征估计。最后,建立了两个基于主成分分析方法的统计模型(一个使用 11 个与大小相关的表型,另一个使用 22 个与形状相关的表型)。对 8 种具有不同几何形状的种子的 3400 个样本进行了测试。实验表明:(1)可以以 0.017mm 的点云完成误差自动获取单个种子的 3D 模型;(2)可以自动提取 33 个表型,与手动测量具有高度相关性(与大小相关的表型的相关系数()高于 0.9981,与形状相关的表型的相关系数高于 0.8421);(3)成功建立了两个统计模型,以实现种子形状的描述和量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf7e/11436011/393a2991c38f/sensors-24-06117-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验