Suppr超能文献

基于相移相关功耗模型的多位智能反射面波束成形

Beamforming for Multi-Bit Intelligent Reflecting Surface with Phase Shift-Dependent Power Consumption Model.

作者信息

Zhang Huimin, Wu Qiucen, Zhu Yu

机构信息

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

出版信息

Sensors (Basel). 2024 Sep 23;24(18):6136. doi: 10.3390/s24186136.

Abstract

In recent years, the intelligent reflecting surface (IRS) has attracted increasing attention for its capability to intelligently reconfigure the wireless propagation channel. However, most existing works ignore the dynamic power consumption of IRS related to the phase shift configuration. This relationship gets even more intractable for a multi-bit IRS because of its nonlinearity and implicit form. In this paper, we investigate the beamforming optimization for multi-bit IRS-aided systems with the practical phase shift-dependent power consumption (PS-DPC) model, aiming at minimizing the power consumption of the system. To solve the implicit and nonlinear relationship, we introduce a selection matrix to explicitly represent the power consumption and the phase shift matrix of the IRS, respectively. Then, we propose a generalized Benders decomposition-based beamforming optimization algorithm in the single-user scenario. Furthermore, in the multi-user scenario, we design a coordinate descent-based algorithm and a genetic algorithm for the beamforming optimization. The simulation results show that the proposed algorithms significantly decrease the power consumption of the multi-bit IRS-aided systems.

摘要

近年来,智能反射面(IRS)因其能够智能地重新配置无线传播信道而受到越来越多的关注。然而,大多数现有工作忽略了与相移配置相关的IRS动态功耗。由于其非线性和隐式形式,这种关系对于多比特IRS来说变得更加难以处理。在本文中,我们使用实际的相移相关功耗(PS-DPC)模型研究多比特IRS辅助系统的波束成形优化,旨在最小化系统的功耗。为了解决隐式和非线性关系,我们引入一个选择矩阵来分别明确表示IRS的功耗和相移矩阵。然后,我们在单用户场景中提出了一种基于广义Benders分解的波束成形优化算法。此外,在多用户场景中,我们设计了一种基于坐标下降的算法和一种用于波束成形优化的遗传算法。仿真结果表明,所提出的算法显著降低了多比特IRS辅助系统的功耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d3/11435911/4c0611f8a14c/sensors-24-06136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验