文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Rheological Characterization of Genipin-Based Crosslinking Pigment and O-Carboxymethyl Chitosan-Oxidized Hyaluronic Acid In Situ Formulable Hydrogels.

作者信息

Beserra Junior Ivo Marquis, de Sousa Lopes Débora, da Silva Barbosa Milena Costa, da Silva Neto João Emídio, da Silva Henrique Nunes, Fook Marcus Vinícius Lia, Navarro Rômulo Feitosa, Silva Suédina Maria de Lima

机构信息

Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil.

Department of Chemistry, State University of Paraíba, Campina Grande 58429-500, PB, Brazil.

出版信息

Polymers (Basel). 2024 Sep 15;16(18):2615. doi: 10.3390/polym16182615.


DOI:10.3390/polym16182615
PMID:39339080
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11435878/
Abstract

The aim of this study was to develop a material capable of rapidly absorbing bodily fluids and forming a resilient, adhesive, viscoelastic hydrogel in situ to prevent post-surgical adhesions. This material was formulated using O-carboxymethyl chitosan (O-CMCS), oxidized hyaluronic acid (OHA), and a crosslinking pigment derived from genipin and glutamic acid (G/GluP). Both crosslinked (O-CMCS/OHA-G/GluP) and non-crosslinked hydrogels (O-CMCS/OHA) were evaluated using a HAAKE™ MARS™ rheometer for their potential as post-surgical barriers. A rheological analysis, including dynamic oscillatory measurements, revealed that the crosslinked hydrogels exhibited significantly higher elastic moduli ('), indicating superior gel formation and mechanical stability compared to non-crosslinked hydrogels. The G/GluP crosslinker enhanced gel stability by increasing the separation between ' and ″ and achieving a lower loss tangent (tan < 1.0), indicating robustness under dynamic physiological conditions. The rapid hydration and gelation properties of the hydrogels underscore their effectiveness as physical barriers. Furthermore, the O-CMCS/OHA-G/GluP hydrogel demonstrated rapid self-healing and efficient application via spraying or spreading, with tissue adherence and viscoelasticity to facilitate movement between tissues and organs, effectively preventing adhesions. Additionally, the hydrogel proved to be both cost effective and scalable, highlighting its potential for clinical applications aimed at preventing post-surgical adhesions.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/6b035415dd76/polymers-16-02615-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/50aa7da26954/polymers-16-02615-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/3539acfb8047/polymers-16-02615-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/233bfc398afc/polymers-16-02615-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/e82118dba88c/polymers-16-02615-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/d2f2dee48812/polymers-16-02615-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/276c1d9623e6/polymers-16-02615-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/10634ccb558b/polymers-16-02615-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/9968eccaf52e/polymers-16-02615-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/6b035415dd76/polymers-16-02615-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/50aa7da26954/polymers-16-02615-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/3539acfb8047/polymers-16-02615-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/233bfc398afc/polymers-16-02615-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/e82118dba88c/polymers-16-02615-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/d2f2dee48812/polymers-16-02615-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/276c1d9623e6/polymers-16-02615-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/10634ccb558b/polymers-16-02615-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/9968eccaf52e/polymers-16-02615-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6259/11435878/6b035415dd76/polymers-16-02615-g009.jpg

相似文献

[1]
Rheological Characterization of Genipin-Based Crosslinking Pigment and O-Carboxymethyl Chitosan-Oxidized Hyaluronic Acid In Situ Formulable Hydrogels.

Polymers (Basel). 2024-9-15

[2]
A carboxymethyl chitosan/oxidized hyaluronic acid composite hydrogel dressing loading with stem cell exosome for chronic inflammation wounds healing.

Int J Biol Macromol. 2024-2

[3]
Dynamic Crosslinked Injectable Mussel-Inspired Hydrogels with Adhesive, Self-Healing, and Biodegradation Properties.

Polymers (Basel). 2023-4-14

[4]
Characterization and Optimization of Injectable In Situ Crosslinked Chitosan-Genipin Hydrogels.

Macromol Biosci. 2023-6

[5]
A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing.

Int J Biol Macromol. 2022-11-1

[6]
Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier.

Acta Biomater. 2020-7-1

[7]
Rheological study of genipin cross-linked chitosan hydrogels.

Biomacromolecules. 2007-12

[8]
Moist-Retaining, Self-Recoverable, Bioadhesive, and Transparent in Situ Forming Hydrogels To Accelerate Wound Healing.

ACS Appl Mater Interfaces. 2020-1-2

[9]
An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of breast cancer recurrence.

Carbohydr Polym. 2023-3-15

[10]
The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid.

Mater Sci Eng C Mater Biol Appl. 2019-4-25

引用本文的文献

[1]
Combined Effect of pH and Neutralizing Solution Molarity on the Rheological Properties of Chitosan Hydrogels for Biomedical Applications.

Gels. 2025-3-18

本文引用的文献

[1]
O-carboxymethyl chitosan in biomedicine: A review.

Int J Biol Macromol. 2024-8

[2]
Amorphous curcumin-based hydrogels to reduce the incidence of post-surgical intrauterine adhesions.

Regen Biomater. 2024-4-24

[3]
Avastin-Loaded 3D-Printed Alginate Scaffold as an Effective Antiadhesive Barrier to Prevent Postsurgical Adhesion Bands Formation.

Macromol Biosci. 2024-6

[4]
Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups.

Mar Drugs. 2023-11-24

[5]
Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications.

Food Chem. 2024-2-15

[6]
Nano-crosslinked dynamic hydrogels for biomedical applications.

Mater Today Bio. 2023-4-23

[7]
An endoscopically compatible fast-gelation powder forms Janus-adhesive hydrogel barrier to prevent postoperative adhesions.

Proc Natl Acad Sci U S A. 2023-2-7

[8]
Dynamic and Self-Healable Chitosan/Hyaluronic Acid-Based In Situ-Forming Hydrogels.

Gels. 2022-7-29

[9]
Self-Healing Chitosan Hydrogels: Preparation and Rheological Characterization.

Polymers (Basel). 2022-6-24

[10]
The Interactions and Release Kinetics of Sodium Hyaluronate Implemented in Nonionic and Anionic Polymeric Hydrogels, Studied by Immunoenzymatic ELISA Test.

Pharmaceutics. 2021-12-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索