The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2219024120. doi: 10.1073/pnas.2219024120. Epub 2023 Jan 30.
Postoperative adhesions occur widely in various tissues, bringing the risk of secondary surgery and increased medical burden. Hydrogel barriers with Janus-adhesive ability can achieve physical isolation of adjacent tissues and are therefore considered an ideal solution. However, integrating endoscopic delivery convenience and viscoelastic Janus hydrogel formation remains a great challenge. Here, we present a report of the in situ formation of Janus-adhesive hydrogel barrier using a sprayable fast-Janus-gelation (FJG) powder. We first methacrylate the polysaccharide macromolecules to break the intermolecular hydrogen bonds and impart the ability of rapid hydration. FJG powder can rapidly absorb interfacial water and crosslink through borate ester bonds, forming a toughly adhesive viscoelastic hydrogel. The Janus barrier can be simply formed by further hydrating the upper powder with cationic solution. We construct rat models to demonstrate the antiadhesions efficiency of viscoelastic FJG hydrogels in organs with different motion modalities (e.g., intestine, heart, liver). We also developed a low-cost delivery device with a standardized surgical procedure and further validated the feasibility and effectiveness of FJG powder in minimally invasive surgery using a preclinical translational porcine model. Considering the advantages in terms of therapeutic efficacy, clinical convenience, and commercialization, our results reveal the great potential of Janus-gelation powder materials as a next-generation antiadhesions barrier.
术后粘连广泛发生于各种组织中,增加了再次手术的风险和医疗负担。具有 Janus 粘附能力的水凝胶屏障可以实现相邻组织的物理隔离,因此被认为是一种理想的解决方案。然而,将内镜输送的便利性和粘弹性 Janus 水凝胶的形成结合起来仍然是一个巨大的挑战。在这里,我们报告了一种使用可喷涂的快速 Janus 胶凝(FJG)粉末原位形成 Janus 粘附水凝胶屏障的方法。我们首先对多糖大分子进行甲基丙烯酰化,以打破分子间氢键并赋予其快速水合的能力。FJG 粉末可以迅速吸收界面水,并通过硼酸酯键交联,形成坚韧的粘弹性水凝胶。通过进一步用阳离子溶液水化上层粉末,可以简单地形成 Janus 屏障。我们构建了大鼠模型,以证明具有不同运动模式的器官(如肠、心脏、肝脏)中粘弹性 FJG 水凝胶的抗粘连效率。我们还开发了一种具有标准化手术程序的低成本输送装置,并进一步使用临床前转化猪模型验证了 FJG 粉末在微创手术中的可行性和有效性。考虑到治疗效果、临床便利性和商业化方面的优势,我们的结果表明 Janus 胶凝粉末材料作为下一代抗粘连屏障具有巨大的潜力。