文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合物作为高效的非病毒基因传递载体:大分子化学和物理结构的作用

Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules.

作者信息

Khan Majad

机构信息

Department of Chemistry, King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia.

Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals KFUPM, Dahran 31261, Saudi Arabia.

出版信息

Polymers (Basel). 2024 Sep 18;16(18):2629. doi: 10.3390/polym16182629.


DOI:10.3390/polym16182629
PMID:39339093
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11435517/
Abstract

Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule's chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions.

摘要

基因治疗是将外源遗传元件导入宿主细胞以达到治疗效果的技术。尽管基因治疗最初被设想为治疗特定遗传问题的潜在方法,但目前它为许多具有不同遗传模式的疾病和后天性疾病提供了解决方案。基因治疗有两大类载体:病毒载体基因治疗和非病毒载体基因治疗。本综述探讨了大分子的化学和物理结构在非病毒基因递送中的作用,包括它们的设计与合成。聚合物可以通过多种方法促进循环、改善递送并控制货物释放。所讨论的突出例子包括聚-L-赖氨酸、聚乙烯亚胺、梳状聚合物、刷状聚合物和星状聚合物,以及水凝胶和天然聚合物及其修饰。虽然已经取得了重大进展,但在基因稳定、靶向特异性和细胞摄取方面仍然存在挑战。克服细胞毒性、提高递送效率以及利用天然聚合物和混合系统是未来发展的关键因素。这篇全面的综述对该领域进行了具有启发性的概述,为创新的非病毒基因递送解决方案指明了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/0f71b77ea52b/polymers-16-02629-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/4b7c0b202eb3/polymers-16-02629-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/dd0144be11ac/polymers-16-02629-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/e892ab57fcb1/polymers-16-02629-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/910c9d212a1b/polymers-16-02629-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/d6224e94d3f6/polymers-16-02629-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/96496e10f88e/polymers-16-02629-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/166144d198a4/polymers-16-02629-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/970d5d3d04c0/polymers-16-02629-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/73afa0e3b073/polymers-16-02629-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/c80657fa0c6f/polymers-16-02629-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/481b4082f4ac/polymers-16-02629-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/33dc038e6167/polymers-16-02629-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/7f93373d1f1b/polymers-16-02629-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/bd84288ea2a9/polymers-16-02629-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/777e970760cd/polymers-16-02629-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/071f84d4e5ad/polymers-16-02629-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/1d2307832b42/polymers-16-02629-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/7d3573d0b234/polymers-16-02629-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/a0f7ffd4fffb/polymers-16-02629-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/4f612e55d344/polymers-16-02629-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/40a9eff51c8f/polymers-16-02629-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/5ceb230bdf62/polymers-16-02629-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/50c8e800f262/polymers-16-02629-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/38999251c9b8/polymers-16-02629-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/0f71b77ea52b/polymers-16-02629-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/4b7c0b202eb3/polymers-16-02629-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/dd0144be11ac/polymers-16-02629-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/e892ab57fcb1/polymers-16-02629-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/910c9d212a1b/polymers-16-02629-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/d6224e94d3f6/polymers-16-02629-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/96496e10f88e/polymers-16-02629-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/166144d198a4/polymers-16-02629-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/970d5d3d04c0/polymers-16-02629-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/73afa0e3b073/polymers-16-02629-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/c80657fa0c6f/polymers-16-02629-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/481b4082f4ac/polymers-16-02629-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/33dc038e6167/polymers-16-02629-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/7f93373d1f1b/polymers-16-02629-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/bd84288ea2a9/polymers-16-02629-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/777e970760cd/polymers-16-02629-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/071f84d4e5ad/polymers-16-02629-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/1d2307832b42/polymers-16-02629-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/7d3573d0b234/polymers-16-02629-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/a0f7ffd4fffb/polymers-16-02629-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/4f612e55d344/polymers-16-02629-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/40a9eff51c8f/polymers-16-02629-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/5ceb230bdf62/polymers-16-02629-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/50c8e800f262/polymers-16-02629-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/38999251c9b8/polymers-16-02629-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7942/11435517/0f71b77ea52b/polymers-16-02629-g022.jpg

相似文献

[1]
Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules.

Polymers (Basel). 2024-9-18

[2]
Bioinspired Star-Shaped Poly(l-lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells.

Mol Pharm. 2018-4-6

[3]
Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications.

Polymers (Basel). 2019-4-25

[4]
Recent advances in nonviral vectors for gene delivery.

Acc Chem Res. 2011-8-26

[5]
Emerging non-viral vectors for gene delivery.

J Nanobiotechnology. 2023-8-17

[6]
Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery.

Acta Biomater. 2017-2-20

[7]
Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector.

Biomater Sci. 2013-12-29

[8]
Peptide-functionalized poly(ethylene glycol) star polymers: DNA delivery vehicles with multivalent molecular architecture.

Bioconjug Chem. 2008-1

[9]
Polymeric Nanocarriers for Non-Viral Gene Delivery.

J Biomed Nanotechnol. 2015-5

[10]
Nontoxic, Biodegradable Hyperbranched Poly(β-amino ester)s for Efficient siRNA Delivery and Gene Silencing.

ACS Appl Mater Interfaces. 2024-3-20

引用本文的文献

[1]
Plasmid DNA Delivery to Cancer Cells with Poly(L-lysine)-Based Copolymers Bearing Thermally Sensitive Segments: Balancing Polyplex Tightness, Transfection Efficiency, and Biocompatibility.

Pharmaceutics. 2025-8-2

[2]
Nanocarrier-Based Systems for Targeted Delivery: Current Challenges and Future Directions.

MedComm (2020). 2025-8-21

[3]
Transfection Technologies for Next-Generation Therapies.

J Clin Med. 2025-8-5

[4]
Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine.

Int J Mol Sci. 2025-7-30

[5]
Evaluation of the PP6D5 Polymer as a Novel Non-Viral Vector in the Development of a CRISPR/nCas9-Based Gene Therapy for Tay-Sachs Disease.

Pharmaceutics. 2025-5-9

[6]
Nanocarriers for cutting-edge cancer immunotherapies.

J Transl Med. 2025-4-16

[7]
Toxicity Evaluation of Sulfobetainized Branched Polyethyleneimine via Antibacterial and Biocompatibility Assays.

Toxics. 2025-2-14

[8]
Spermine Significantly Increases the Transfection Efficiency of Cationic Polymeric Gene Vectors.

Pharmaceutics. 2025-1-17

[9]
Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine.

Front Genome Ed. 2024-12-12

[10]
Synthesis and characterization of poly (β-amino ester) polyplex nanocarrier with high encapsulation and uptake efficiency: impact of extracellular conditions.

Nanomedicine (Lond). 2025-1

本文引用的文献

[1]
Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers.

Materials (Basel). 2024-4-23

[2]
NeuroPorator: An open-source, current-limited electroporator for safe in utero gene transfer.

J Neurosci Methods. 2024-6

[3]
Polymer-Based Drug Delivery Systems for Cancer Therapeutics.

Polymers (Basel). 2024-3-19

[4]
The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer.

Carbohydr Polym. 2023-11-15

[5]
Emerging non-viral vectors for gene delivery.

J Nanobiotechnology. 2023-8-17

[6]
Recent Advancement in mRNA Vaccine Development and Applications.

Pharmaceutics. 2023-7-18

[7]
Hyaluronic acid: More than a carrier, having an overpowering extracellular and intracellular impact on cancer.

Carbohydr Polym. 2023-10-1

[8]
Cationic Polymers as Transfection Reagents for Nucleic Acid Delivery.

Pharmaceutics. 2023-5-15

[9]
Stealth and pseudo-stealth nanocarriers.

Adv Drug Deliv Rev. 2023-7

[10]
Self-assembled nanocomposites of carboxymethyl β-dextran/protamine sulfate for enhanced chemotherapeutic drug sensitivity of triple-negative breast cancer by autophagy inhibition via a ternary collaborative strategy.

Int J Biol Macromol. 2023-4-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索