Suppr超能文献

基于带有热敏片段的聚(L-赖氨酸)共聚物将质粒DNA递送至癌细胞:平衡多聚体紧密性、转染效率和生物相容性。

Plasmid DNA Delivery to Cancer Cells with Poly(L-lysine)-Based Copolymers Bearing Thermally Sensitive Segments: Balancing Polyplex Tightness, Transfection Efficiency, and Biocompatibility.

作者信息

Kotmakci Mustafa, Toncheva-Moncheva Natalia, Tarkavannezhad Sahar, Debelec Butuner Bilge, Dimitrov Ivaylo, Rangelov Stanislav

机构信息

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Ankara Street 172/98 Campus-Bornova, 35040 Izmir, Türkiye.

Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. 103-A, 1113 Sofia, Bulgaria.

出版信息

Pharmaceutics. 2025 Aug 2;17(8):1012. doi: 10.3390/pharmaceutics17081012.

Abstract

Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. . A series of copolymers-synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) (PNIPAm), hydrophilic poly(ethylene glycol) (PEG) grafts, and a polycationic poly(L-lysine) (PLL) block of varying lengths ((PNIPAm)--(PEG)--(PLL), z = 10-65)-were investigated. Plasmid DNA complexation with the copolymers was achieved through temperature-modulated methods. The resulting polyplexes were characterized by evaluating complex strength, particle size, zeta potential, plasmid DNA loading capacity, resistance to anionic stress, stability in serum, and lysosomal membrane destabilization assay. The copolymers' potential for plasmid DNA delivery was assessed through cytotoxicity and transfection studies in cancer cell lines. Across all complexation methods, the copolymers effectively condensed plasmid DNA into stable polyplexes. Particle sizes (60-90 nm) ranged with no apparent correlation to copolymer type, complexation method, or N/P ratio, whereas zeta potentials (+10-+20 mV) and resistance to polyanionic stress were dependent on the PLL length and N/P ratio. Cytotoxicity analysis revealed a direct correlation between PLL chain length and cell viability, with all copolymers demonstrating minimal cytotoxicity at concentrations required for efficient transfection. PNL-20 ((PNIPAm)--(PEG)--(PLL)) exhibited the highest transfection efficiency among the tested formulations while maintaining low cytotoxicity. The study highlights the promising potential of (PNIPAm)--(PEG)--(PLL) copolymers for effective plasmid DNA delivery to cancer cells. It reveals the importance of attaining the right balance between polyplex tightness and plasmid release to achieve improved biocompatibility and transfection efficiency.

摘要

在基因治疗中,将核酸高效递送至靶细胞仍然是一项关键挑战。由于其在生物相容性和安全性方面的优势,近期研究越来越多地聚焦于非病毒基因递送。研究了一系列通过整合热敏性聚(N-异丙基丙烯酰胺)(PNIPAm)、亲水性聚(乙二醇)(PEG)接枝物以及不同长度的聚阳离子聚(L-赖氨酸)(PLL)嵌段合成的共聚物((PNIPAm)--(PEG)--(PLL),z = 10 - 65)。通过温度调节方法实现质粒DNA与共聚物的复合。通过评估复合强度、粒径、zeta电位、质粒DNA负载能力、对阴离子应激的抗性、在血清中的稳定性以及溶酶体膜去稳定化测定来表征所得的多聚体。通过在癌细胞系中的细胞毒性和转染研究评估共聚物递送质粒DNA的潜力。在所有复合方法中,共聚物均有效地将质粒DNA浓缩成稳定的多聚体。粒径范围为60 - 90 nm,与共聚物类型、复合方法或N/P比无明显相关性,而zeta电位(+10 - +20 mV)和对聚阴离子应激的抗性取决于PLL长度和N/P比。细胞毒性分析显示PLL链长度与细胞活力之间存在直接相关性,所有共聚物在高效转染所需浓度下均表现出最小的细胞毒性。PNL - 20((PNIPAm)--(PEG)--(PLL))在测试制剂中表现出最高的转染效率,同时保持低细胞毒性。该研究突出了(PNIPAm)--(PEG)--(PLL)共聚物在有效向癌细胞递送质粒DNA方面的潜在前景。它揭示了在多聚体紧密性和质粒释放之间取得适当平衡以实现改善的生物相容性和转染效率的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8c9/12389523/b04b1213814c/pharmaceutics-17-01012-g001.jpg

相似文献

3
Structural stability and RNase resistance of mRNA Polyplex micelles for systemic delivery.
J Control Release. 2025 Aug 10;384:113935. doi: 10.1016/j.jconrel.2025.113935. Epub 2025 Jun 5.
4
Injectable thermosensitive hydrogel for local and controlled delivery of siRNA-STAT3 polyplexes to treat advanced-stage ovarian cancer.
J Control Release. 2025 Aug 10;384:113890. doi: 10.1016/j.jconrel.2025.113890. Epub 2025 May 26.
5
The Impact of Using Different Cationic Polymers on the Formation of Efficient Lipopolyplexes for pDNA Delivery.
Int J Nanomedicine. 2025 Aug 19;20:10021-10041. doi: 10.2147/IJN.S513568. eCollection 2025.
8
Nano-polyplexes from a cationic modification of poly(γ-glutamic acid).
J Biomater Sci Polym Ed. 2025 Jul 8:1-15. doi: 10.1080/09205063.2025.2527221.

本文引用的文献

2
Prime Editing: A Revolutionary Technology for Precise Treatment of Genetic Disorders.
Cell Prolif. 2025 Apr;58(4):e13808. doi: 10.1111/cpr.13808. Epub 2025 Feb 27.
4
Gene therapy for genetic diseases: challenges and future directions.
MedComm (2020). 2025 Feb 13;6(2):e70091. doi: 10.1002/mco2.70091. eCollection 2025 Feb.
5
Polymeric nanocarriers for therapeutic gene delivery.
Asian J Pharm Sci. 2025 Feb;20(1):101015. doi: 10.1016/j.ajps.2025.101015. Epub 2025 Jan 4.
6
DNA vaccines as promising immuno-therapeutics against cancer: a new insight.
Front Immunol. 2025 Jan 13;15:1498431. doi: 10.3389/fimmu.2024.1498431. eCollection 2024.
7
Plasmid Gene Therapy for Monogenic Disorders: Challenges and Perspectives.
Pharmaceutics. 2025 Jan 14;17(1):104. doi: 10.3390/pharmaceutics17010104.
8
The Role of Gene Expression Profiling in the Management of Cutaneous Squamous Cell Cancer: A Review.
Cancers (Basel). 2024 Nov 23;16(23):3925. doi: 10.3390/cancers16233925.
9
Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers.
Funct Integr Genomics. 2024 Sep 28;24(5):177. doi: 10.1007/s10142-024-01459-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验