Suppr超能文献

以铝为中心的三元组合捕收剂在弱碱性矿浆中对钛铁矿和橄榄石的高效浮选分离

Efficient Flotation Separation of Ilmenite and Olivine in a Weak Alkaline Pulp Using a Ternary Combination Collector Centered around Al.

作者信息

Li Jinhui, He Hao, Shao Yanhai, Liu Chenjie, Li Rui, Chen Hongqin, Meng Xiao

机构信息

Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China.

出版信息

Molecules. 2024 Sep 14;29(18):4379. doi: 10.3390/molecules29184379.

Abstract

Due to the similar physical and chemical properties of ilmenite and olivine, separating them is challenging. The flotation process, with the use of collectors, is an effective method. In this study, a ternary collector consisting of aluminum ion (III), benzohydroxamic acid (BHA), and sodium oleate (NaOL) was prepared for the flotation separation of ilmenite and olivine. Through micro-flotation experiments, molecular dynamics simulation (MD), density functional theory (DFT), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis, the synergistic effect between the components of the ternary collector and the adsorption configuration on the surface of ilmenite was investigated. The results revealed that at pH = 8, Al (III), BHA, and NaOL could coordinate and adsorb effectively on the surface of ilmenite, enhancing its floatability for separation from olivine. The adsorption configuration differed from previous reports, showing a co-adsorption of multiple forms on the surface of ilmenite.

摘要

由于钛铁矿和橄榄石具有相似的物理化学性质,将它们分离具有挑战性。使用捕收剂的浮选工艺是一种有效的方法。在本研究中,制备了一种由铝离子(III)、苯甲羟肟酸(BHA)和油酸钠(NaOL)组成的三元捕收剂,用于钛铁矿和橄榄石的浮选分离。通过微浮选实验、分子动力学模拟(MD)、密度泛函理论(DFT)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和飞行时间二次离子质谱(TOF-SIMS)分析,研究了三元捕收剂各组分之间的协同作用以及在钛铁矿表面的吸附构型。结果表明,在pH = 8时,Al(III)、BHA和NaOL能够有效地配位并吸附在钛铁矿表面,提高其与橄榄石分离的可浮性。其吸附构型与以往报道不同,在钛铁矿表面呈现多种形式的共吸附。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bb3/11434116/e93ff87e079f/molecules-29-04379-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验