Suppr超能文献

通过分子动力学模拟研究含氟聚酰亚胺中原子氧侵蚀的机制

Mechanisms of Atomic Oxygen Erosion in Fluorinated Polyimides Investigated by Molecular Dynamics Simulations.

作者信息

Zhou Shengrui, Zhang Li, Zou Liang, Ayubi Bilal Iqbal, Wang Yiwei

机构信息

School of Electrical Engineering, Shandong University, Jinan 250061, China.

出版信息

Molecules. 2024 Sep 21;29(18):4485. doi: 10.3390/molecules29184485.

Abstract

Traditional polyimides have highly conjugated structures, causing significant coloration under visible light. Fluorinated colorless polyimides, known for their light weight and excellent optical properties, are considered ideal for future aerospace optical lenses. However, their lifespan in low Earth orbit is severely limited by high-density atomic oxygen (AO) erosion, and the degradation behavior of fluorinated polyimides under AO exposure is not well understood. This study uses reactive molecular dynamics simulations to model two fluorinated polyimides, PMDA-TFMB and 6FDA-TFMB, with different fluorine contents, to explore their degradation mechanisms under varying AO concentrations. The results indicate that 6FDA-TFMB has slightly better resistance to erosion than PMDA-TFMB, mainly due to the enhanced chemical stability from its -CF groups. As AO concentration increases, widespread degradation of the polyimides occurs, with AO-induced cleavage and temperature-driven pyrolysis happening simultaneously, producing CO and OH as the main degradation products. This study uncovers the molecular-level degradation mechanisms of fluorinated polyimides, offering new insights for the design of AO erosion protection systems.

摘要

传统聚酰亚胺具有高度共轭结构,在可见光下会产生明显的颜色。氟化无色聚酰亚胺以其重量轻和优异的光学性能而闻名,被认为是未来航空航天光学镜片的理想材料。然而,它们在低地球轨道的寿命受到高密度原子氧(AO)侵蚀的严重限制,并且氟化聚酰亚胺在AO暴露下的降解行为尚未得到充分了解。本研究使用反应分子动力学模拟对两种具有不同氟含量的氟化聚酰亚胺PMDA-TFMB和6FDA-TFMB进行建模,以探索它们在不同AO浓度下的降解机制。结果表明,6FDA-TFMB的抗侵蚀能力略优于PMDA-TFMB,这主要归因于其-CF基团增强了化学稳定性。随着AO浓度的增加,聚酰亚胺发生广泛降解,AO诱导的裂解和温度驱动的热解同时发生,产生CO和OH作为主要降解产物。本研究揭示了氟化聚酰亚胺的分子水平降解机制,为AO侵蚀保护系统的设计提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d95f/11433985/00fa42191b97/molecules-29-04485-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验