College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
Plant Cell Rep. 2024 Sep 28;43(10):243. doi: 10.1007/s00299-024-03338-0.
The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO of the split-root System (Sp.KNO) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.
该研究在谷子中建立了分体根系统(SRS),并基于该系统和转录组分析,确定了与系统氮信号相关的分子调控机制和代谢途径。作物的生长主要受到氮(N)这种必需营养素的供应限制。谷子(Setaria italica L.)是一种重要的 orphan 作物,以其对贫瘠条件的强耐受性而闻名。尽管如此,谷子中氮的信号通路在很大程度上仍未被探索。鉴定谷子中氮响应的候选基因对于提高其农业生产力至关重要。本研究利用谷子的分体根系统(SRS)来揭示与系统氮信号(SNS)相关的基因。SRS 的转录组分析揭示了 2158 个与 SNS 相关的差异表达基因(DEGs),包括那些参与细胞分裂素合成、转录因子、E3 泛素连接酶和 ROS 代谢的基因。通过 RNAi 在转基因植物中沉默 SiIPT5 和 SiATL31 基因导致 SNS 反应减弱,表明它们在谷子氮信号通路中的作用。此外,分体根系统(Sp.KNO)的 KNO 诱导 ROS 代谢相关基因的表达,表明 ROS 信号可能参与谷子的 SNS。总的来说,本研究揭示了谷子与 SNS 相关的分子调控机制和代谢途径。