Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Dept. of Biomedical Engineering, USA; Center for Women's Health Engineering, USA.
Center for Women's Health Engineering, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Placenta. 2024 Nov;157:67-75. doi: 10.1016/j.placenta.2024.09.016. Epub 2024 Sep 24.
Rising maternal mortality rates in the U.S. are a significant public health issue that must be addressed; however, much of the basic science information required to target pregnancy-related pathologies have not yet been defined. Placental and blastocyst implantation research are challenging to perform in humans because of the early time frame of these processes in pregnancy and limited access to first trimester tissues. As a result, there is a critical need to develop model systems capable of studying these processes in increasing mechanistic detail. With the recent passing of the FDA Modernization Act 2.0 and advances in tissue engineering methods, three-dimensional microphysiological model systems offer an exciting opportunity to model early stages of placentation. Here, we detail the synthesis, characterization, and application of gelatin methacryloyl (GelMA) hydrogel platforms for studying trophoblast behavior in three-dimensional hydrogel systems. Photopolymerization strategies to fabricate GelMA hydrogels render the hydrogels homogeneous in terms of structure and stable under physiological temperatures, allowing for rigorous fabrication of reproducible hydrogel variants. Unlike other natural polymers that have minimal opportunity to tune their properties, GelMA hydrogel properties can be tuned across many axes of variation, including polymer degree of functionalization, gelatin bloom strength, light exposure time and intensity, polymer weight percent, photoinitiator concentration, and physical geometry. In this work, we aim to inspire and instruct the field to utilize GelMA biomaterial strategies for future placental research. With enhanced microphysiological models of pregnancy, we can now generate the basic science information required to address problems in pregnancy.
美国不断上升的孕产妇死亡率是一个重大的公共卫生问题,必须加以解决;然而,针对与妊娠相关的病理情况,仍有许多基础科学信息尚未确定。由于这些过程在妊娠早期的时间框架以及获得妊娠早期组织的机会有限,因此在人类中进行胎盘和胚泡植入研究具有挑战性。因此,迫切需要开发能够更深入地研究这些过程的模型系统。随着最近 FDA 现代化法案 2.0 的通过以及组织工程方法的进步,三维微生理模型系统为模拟胎盘形成的早期阶段提供了一个令人兴奋的机会。在这里,我们详细介绍了明胶甲基丙烯酰(GelMA)水凝胶平台的合成、表征和应用,用于研究三维水凝胶系统中滋养层细胞的行为。用于制造 GelMA 水凝胶的光聚合策略可使水凝胶在结构上均匀,并在生理温度下稳定,从而可以严格制造具有可重复性能的水凝胶变体。与其他天然聚合物不同,这些天然聚合物几乎没有机会调整其性质,GelMA 水凝胶的性质可以在多个变化轴上进行调整,包括聚合物官能化程度、明胶 bloom 强度、光暴露时间和强度、聚合物重量百分比、光引发剂浓度和物理几何形状。在这项工作中,我们旨在激发和指导该领域利用 GelMA 生物材料策略进行未来的胎盘研究。有了妊娠的增强型微生理模型,我们现在可以生成解决妊娠问题所需的基础科学信息。