一种新型人工智能技术在接受常规冠状动脉计算机断层扫描血管造影的患者中量化冠状动脉炎症和心血管风险的成本效益。

Cost-effectiveness of a novel AI technology to quantify coronary inflammation and cardiovascular risk in patients undergoing routine coronary computed tomography angiography.

作者信息

Tsiachristas Apostolos, Chan Kenneth, Wahome Elizabeth, Kearns Ben, Patel Parijat, Lyasheva Maria, Syed Nigar, Fry Sam, Halborg Thomas, West Henry, Nicol Edward, Adlam David, Modi Bhavik, Kardos Attila, Greenwood John P, Sabharwal Nikant, De Maria Giovanni Luigi, Munir Shahzad, McAlindon Elisa, Sohan Yogesh, Tomlins Pete, Siddique Muhammad, Shirodaria Cheerag, Blankstein Ron, Desai Milind, Neubauer Stefan, Channon Keith M, Deanfield John, Akehurst Ron, Antoniades Charalambos

机构信息

Nuffield Department of Primary Care Health Sciences & Department of Psychiatry, University of Oxford, Oxford, OX2 6GG, UK.

Acute Multidisciplinary Imaging & Interventional Centre, British Heart Foundation (BHF) Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford NIHR Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.

出版信息

Eur Heart J Qual Care Clin Outcomes. 2025 Jun 23;11(4):434-444. doi: 10.1093/ehjqcco/qcae085.

Abstract

AIMS

Coronary computed tomography angiography (CCTA) is a first-line investigation for chest pain in patients with suspected obstructive coronary artery disease (CAD). However, many acute cardiac events occur in the absence of obstructive CAD. We assessed the lifetime cost-effectiveness of integrating a novel artificial intelligence-enhanced image analysis algorithm (AI-Risk) that stratifies the risk of cardiac events by quantifying coronary inflammation, combined with the extent of coronary artery plaque and clinical risk factors, by analysing images from routine CCTA.

METHODS AND RESULTS

A hybrid decision-tree with population cohort Markov model was developed from 3393 consecutive patients who underwent routine CCTA for suspected obstructive CAD and followed up for major adverse cardiac events over a median (interquartile range) of 7.7(6.4-9.1) years. In a prospective real-world evaluation survey of 744 consecutive patients undergoing CCTA for chest pain investigation, the availability of AI-Risk assessment led to treatment initiation or intensification in 45% of patients. In a further prospective study of 1214 consecutive patients with extensive guidelines recommended cardiovascular risk profiling, AI-Risk stratification led to treatment initiation or intensification in 39% of patients beyond the current clinical guideline recommendations. Treatment guided by AI-Risk modelled over a lifetime horizon could lead to fewer cardiac events (relative reductions of 11%, 4%, 4%, and 12% for myocardial infarction, ischaemic stroke, heart failure, and cardiac death, respectively). Implementing AI-Risk Classification in routine interpretation of CCTA is highly likely to be cost-effective (incremental cost-effectiveness ratio £1371-3244), both in scenarios of current guideline compliance, or when applied only to patients without obstructive CAD.

CONCLUSIONS

Compared with standard care, the addition of AI-Risk assessment in routine CCTA interpretation is cost-effective, by refining risk-guided medical management.

摘要

目的

冠状动脉计算机断层扫描血管造影(CCTA)是疑似阻塞性冠状动脉疾病(CAD)患者胸痛的一线检查方法。然而,许多急性心脏事件发生在无阻塞性CAD的情况下。我们通过分析常规CCTA图像,评估了一种新型人工智能增强图像分析算法(AI-Risk)的终生成本效益,该算法通过量化冠状动脉炎症、结合冠状动脉斑块程度和临床风险因素来分层心脏事件风险。

方法和结果

从3393例因疑似阻塞性CAD接受常规CCTA并随访主要不良心脏事件的连续患者中,开发了一种混合决策树与人群队列马尔可夫模型,随访时间中位数(四分位间距)为7.7(6.4 - 9.1)年。在一项对744例因胸痛接受CCTA的连续患者进行的前瞻性真实世界评估调查中,AI-Risk评估的可用性导致45%的患者开始治疗或强化治疗。在另一项对1214例有广泛指南推荐的心血管风险评估的连续患者的前瞻性研究中,AI-Risk分层导致39%的患者开始治疗或强化治疗,超出了当前临床指南的建议。在终生范围内由AI-Risk指导的治疗可减少心脏事件(心肌梗死、缺血性中风、心力衰竭和心源性死亡分别相对减少11%、4%、4%和12%)。在CCTA的常规解读中实施AI-Risk分类很可能具有成本效益(增量成本效益比为1371 - 3244英镑),无论是在当前遵循指南的情况下,还是仅应用于无阻塞性CAD的患者时。

结论

与标准治疗相比,在常规CCTA解读中增加AI-Risk评估通过优化风险指导的医疗管理具有成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbc7/12187117/6cefac1fd6ce/qcae085fig1g.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索