心血管成像中的人工智能:现状、临床影响及未来方向。

Artificial Intelligence in Cardiovascular Imaging: Current Landscape, Clinical Impact, and Future Directions.

作者信息

Edpuganti Sudeep, Shamim Amna, Gangolli Vilina Hemant, Weerasekara Ranasinghe Arachchige Dona Kashmira Nawodi, Yellamilli Amulya

机构信息

Department of Medicine, Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia.

Department of Medicine, School of Health Sciences, The University of Georgia, Tbilisi, Georgia.

出版信息

Discoveries (Craiova). 2025 Jun 30;13(1):e211. doi: 10.15190/d.2025.10. eCollection 2025 Apr-Jun.

Abstract

Cardiovascular (CV) imaging is rapidly transforming with the advent of artificial intelligence (AI), automating and augmenting diagnostic pipelines in echocardiography, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging. In this review, we summarize recent developments in convolutional neural networks for real-time echocardiographic interpretation, deep learning for coronary artery calcium scoring that achieves near-perfect agreement with manual methods, and AI-driven plaque quantification and stenosis detection on coronary CT angiography, which achieves an accuracy of ≥ 96%. FDA-approved platforms (e.g., Aidoc, HeartFlow, Caption Health) emphasize clinical translation, while automated segmentation and perfusion analysis in cardiac MRI produce Dice coefficients ≥ 0.93. We critically analyze persistent issues, algorithmic bias, explainability, data privacy, regulatory heterogeneity, and medico-legal liability. We also discuss risk-reduction tactics, such as federated learning and human-in-the-loop oversight. Reactive diagnostics will allow proactive, personalized treatment in the future, assuming we look ahead, thanks to multimodal AI, wearable sensors, and predictive analytics. For AI to fully optimize cardiovascular care, thorough validation, open algorithmic design, and interdisciplinary cooperation will be necessary.

摘要

随着人工智能(AI)的出现,心血管(CV)成像正在迅速变革,实现了超声心动图、计算机断层扫描(CT)、磁共振成像(MRI)和核成像诊断流程的自动化与强化。在本综述中,我们总结了卷积神经网络在实时超声心动图解读方面的最新进展、深度学习在冠状动脉钙化评分方面与手动方法达成近乎完美一致性的成果,以及人工智能驱动的冠状动脉CT血管造影斑块定量和狭窄检测(准确率≥96%)。美国食品药品监督管理局(FDA)批准的平台(如Aidoc、HeartFlow、Caption Health)强调临床转化,而心脏MRI中的自动分割和灌注分析产生的骰子系数≥0.93。我们批判性地分析了持续存在的问题、算法偏差、可解释性、数据隐私、监管异质性以及医疗法律责任。我们还讨论了降低风险的策略,如联邦学习和人工参与监督。假设我们借助多模态人工智能、可穿戴传感器和预测分析向前看,反应性诊断将在未来实现主动、个性化的治疗。为使人工智能充分优化心血管护理,全面验证、开放算法设计和跨学科合作将是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b4f/12327583/7304cd97d5da/discoveries-13-211-g001.jpg

相似文献

[2]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索