School of Natural Sciences, Birkbeck University of London, London, United Kingdom.
Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
Nat Commun. 2024 Sep 28;15(1):8426. doi: 10.1038/s41467-024-52539-4.
Neuronal hyperexcitability is a key element of many neurodegenerative disorders including the motor neuron disease Amyotrophic Lateral Sclerosis (ALS), where it occurs associated with elevated late sodium current (I). I results from incomplete inactivation of voltage-gated sodium channels (VGSCs) after their opening and shapes physiological membrane excitability. However, dysfunctional increases can cause hyperexcitability-associated diseases. Here we reveal the atypical binding mechanism which explains how the neuroprotective ALS-treatment drug riluzole stabilises VGSCs in their inactivated state to cause the suppression of I that leads to reversed cellular overexcitability. Riluzole accumulates in the membrane and enters VGSCs through openings to their membrane-accessible fenestrations. Riluzole binds within these fenestrations to stabilise the inactivated channel state, allowing for the selective allosteric inhibition of I without the physical block of Na conduction associated with traditional channel pore binding VGSC drugs. We further demonstrate that riluzole can reproduce these effects on a disease variant of the non-neuronal VGSC isoform Nav1.4, where pathologically increased I is caused directly by mutation. Overall, we identify a model for VGSC inhibition that produces effects consistent with the inhibitory action of riluzole observed in models of ALS. Our findings will aid future drug design and supports research directed towards riluzole repurposing.
神经元过度兴奋是许多神经退行性疾病的一个关键因素,包括运动神经元疾病肌萎缩侧索硬化症(ALS),在这种疾病中,它与升高的晚期钠电流(I)有关。I 是由于电压门控钠通道(VGSCs)在开放后不完全失活而产生的,它塑造了生理膜的兴奋性。然而,功能失调的增加会导致与过度兴奋相关的疾病。在这里,我们揭示了一种非典型的结合机制,该机制解释了神经保护 ALS 治疗药物利鲁唑如何稳定 VGSCs 的失活状态,从而抑制 I,导致细胞过度兴奋的逆转。利鲁唑在膜中积累,并通过其膜可及的窗孔进入 VGSCs。利鲁唑结合在这些窗孔内,稳定失活的通道状态,允许对 I 进行选择性变构抑制,而不会像传统的通道孔结合 VGSC 药物那样导致 Na 传导的物理阻断。我们进一步证明,利鲁唑可以在非神经元 VGSC 同工型 Nav1.4 的疾病变体上再现这些效应,其中病理性增加的 I 直接由突变引起。总的来说,我们确定了一种 VGSC 抑制模型,该模型产生的效应与在 ALS 模型中观察到的利鲁唑的抑制作用一致。我们的发现将有助于未来的药物设计,并支持针对利鲁唑重新定位的研究。