Suppr超能文献

药物在Nav1.5心脏钠通道孔中呈现出多样的结合模式和进入途径。

Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore.

作者信息

Tao Elaine, Corry Ben

机构信息

Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia.

出版信息

J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413658. Epub 2025 Jan 7.

Abstract

Small molecule inhibitors of the sodium channel are common pharmacological agents used to treat a variety of cardiac and nervous system pathologies. They act on the channel via binding within the pore to directly block the sodium conduction pathway and/or modulate the channel to favor a non-conductive state. Despite their abundant clinical use, we lack specific knowledge of their protein-drug interactions and the subtle variations between different compound structures. This study investigates the binding and accessibility of nine different compounds in the pore cavity of the Nav1.5 sodium channel using enhanced sampling simulations. We find that most compounds share a common location of pore binding-near the mouth of the DII-III fenestration-associated with the high number of aromatic residues in this region. In contrast, some other compounds prefer binding within the lateral fenestrations where they compete with lipids, rather than binding in the central cavity. Overall, our simulation results suggest that the drug binding within the pore is highly promiscuous, with most drugs having multiple low-affinity binding sites. Access to the pore interior via two out of four of the hydrophobic fenestrations is favorable for the majority of compounds. Our results indicate that the polyspecific and diffuse binding of inhibitors in the pore contributes to the varied nature of their inhibitory effects and can be exploited for future drug discovery and optimization.

摘要

钠通道小分子抑制剂是用于治疗多种心脏和神经系统疾病的常见药物。它们通过结合在孔道内作用于通道,直接阻断钠传导途径和/或调节通道使其倾向于非传导状态。尽管它们在临床上广泛使用,但我们缺乏关于其蛋白质 - 药物相互作用以及不同化合物结构之间细微差异的具体知识。本研究使用增强采样模拟研究了九种不同化合物在Nav1.5钠通道孔腔内的结合和可及性。我们发现大多数化合物在孔道结合的位置相同——靠近DII - III开窗的口部,该区域有大量芳香族残基。相比之下,其他一些化合物更喜欢结合在侧向开窗内,在那里它们与脂质竞争,而不是结合在中央腔中。总体而言,我们的模拟结果表明孔道内的药物结合非常杂乱,大多数药物有多个低亲和力结合位点。对于大多数化合物来说,通过四个疏水开窗中的两个进入孔道内部是有利的。我们的结果表明抑制剂在孔道内的多特异性和扩散性结合导致了其抑制作用的多样性,可用于未来的药物发现和优化。

相似文献

1
Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore.
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413658. Epub 2025 Jan 7.
2
Characterizing fenestration size in sodium channel subtypes and their accessibility to inhibitors.
Biophys J. 2022 Jan 18;121(2):193-206. doi: 10.1016/j.bpj.2021.12.025. Epub 2021 Dec 24.
3
Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.
PLoS One. 2012;7(7):e41667. doi: 10.1371/journal.pone.0041667. Epub 2012 Jul 27.
5
Investigating the size and dynamics of voltage-gated sodium channel fenestrations.
Channels (Austin). 2014;8(3):264-77. doi: 10.4161/chan.28136.
6
Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.
Mol Pharmacol. 2015 Feb;87(2):207-17. doi: 10.1124/mol.114.094789. Epub 2014 Nov 24.
7
Differences in local anaesthetic and antiepileptic binding in the inactivated state of human sodium channel Nav1.4.
Biophys J. 2021 Dec 21;120(24):5553-5563. doi: 10.1016/j.bpj.2021.11.014. Epub 2021 Nov 11.
8
Fenestrations control resting-state block of a voltage-gated sodium channel.
Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13111-13116. doi: 10.1073/pnas.1814928115. Epub 2018 Dec 5.

引用本文的文献

1
Correction: How could simulations elucidate Nav1.5 channel blockers mechanism?
J Gen Physiol. 2025 Feb 3;157(2). doi: 10.1085/jgp.20241373001082025c. Epub 2025 Jan 16.
2
How could simulations elucidate Nav1.5 channel blockers mechanism?
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413730. Epub 2025 Jan 7.

本文引用的文献

2
Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine.
Nat Cardiovasc Res. 2023 Jun;2(6):587-594. doi: 10.1038/s44161-023-00271-5. Epub 2023 May 4.
4
A structural atlas of druggable sites on Na channels.
Channels (Austin). 2024 Dec;18(1):2287832. doi: 10.1080/19336950.2023.2287832. Epub 2023 Nov 30.
5
Dual-pocket inhibition of Na channels by the antiepileptic drug lamotrigine.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2309773120. doi: 10.1073/pnas.2309773120. Epub 2023 Oct 2.
6
UCSF ChimeraX: Tools for structure building and analysis.
Protein Sci. 2023 Nov;32(11):e4792. doi: 10.1002/pro.4792.
7
A robust normalized local filter to estimate compositional heterogeneity directly from cryo-EM maps.
Nat Commun. 2023 Sep 19;14(1):5802. doi: 10.1038/s41467-023-41478-1.
8
Cannabidiol inhibits Na channels through two distinct binding sites.
Nat Commun. 2023 Jun 17;14(1):3613. doi: 10.1038/s41467-023-39307-6.
9
Structural mapping of Na1.7 antagonists.
Nat Commun. 2023 Jun 3;14(1):3224. doi: 10.1038/s41467-023-38942-3.
10
Structural basis for Na1.7 inhibition by pore blockers.
Nat Struct Mol Biol. 2022 Dec;29(12):1208-1216. doi: 10.1038/s41594-022-00860-1. Epub 2022 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验