Hollingworth David, Herold Karl F, Kelly Geoff, Mykhaylyk Vitaliy B, Xiang Jiaxin, Zhang Donghang, Wallace B A, Hemmings Hugh C
School of Natural Sciences, Birkbeck University of London, London, UK.
Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
bioRxiv. 2024 Nov 8:2024.11.04.621342. doi: 10.1101/2024.11.04.621342.
Volatile general anesthetics are used for inhalational anesthesia in hundreds of millions of surgical procedures annually, yet their mechanisms of action remain unclear. Membrane proteins involved in cell signaling are major targets for anesthetics, and voltage-gated ion channels that mediate neurotransmission, movement, and cognition are sensitive to volatile anesthetics (VAs). In many cases, the effects produced by VAs on mammalian ion channels are reproduced in prokaryotic orthologues, providing an opportunity to investigate VA interactions at high resolution using these structurally simpler prokaryotic proteins. We utilized the bacterial voltage-gated sodium channel (VGSC) NavMs from to investigate its interaction with the widely used VA sevoflurane. Sevoflurane interacted directly with NavMs, producing effects consistent with multisite binding models for VA actions on their targets. We report the identification of one of these interactions at atomic detail providing the first high-resolution structure of a VA bound to a voltage-gated ion channel. The X-ray crystal structure shows sevoflurane binding to NavMs within an intramembrane hydrophobic pocket formed by residues from the voltage sensor and channel pore, domains essential for channel gating. Mutation of the dominant sevoflurane binding-site residue within this pocket, and analogous residues found in similar sites in human VGSCs, profoundly affected channel properties, supporting a critical role for this site in VGSC function. These findings provide the basis for future work to understand the role of VA interactions with VGSCs in both the anesthetic and toxic effects associated with general anesthesia.
挥发性全身麻醉剂每年用于数亿例外科手术的吸入麻醉,但它们的作用机制仍不清楚。参与细胞信号传导的膜蛋白是麻醉剂的主要靶点,介导神经传递、运动和认知的电压门控离子通道对挥发性麻醉剂(VAs)敏感。在许多情况下,VAs对哺乳动物离子通道产生的效应在原核同源物中也会出现,这为使用这些结构更简单的原核蛋白以高分辨率研究VA相互作用提供了机会。我们利用来自的细菌电压门控钠通道(VGSC)NavMs来研究其与广泛使用的VA七氟烷的相互作用。七氟烷直接与NavMs相互作用,产生的效应与VA作用于其靶点的多位点结合模型一致。我们报告了在原子细节上对其中一种相互作用的鉴定,提供了VA与电压门控离子通道结合的首个高分辨率结构。X射线晶体结构显示七氟烷在由电压传感器和通道孔的残基形成的膜内疏水口袋内与NavMs结合,这些结构域是通道门控所必需的。该口袋内主要的七氟烷结合位点残基以及在人类VGSCs类似位点中发现的类似残基的突变,深刻影响了通道特性,支持该位点在VGSC功能中起关键作用。这些发现为未来研究VA与VGSCs相互作用在全身麻醉相关的麻醉和毒性作用中的作用奠定了基础。