文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同身体成分对射血分数降低心衰(HFrEF)和射血分数保留心衰(HFpEF)患者氧动力学和运动耐量的影响。

Differential impacts of body composition on oxygen kinetics and exercise tolerance of HFrEF and HFpEF patients.

机构信息

Rehabilitation Sciences Program, University of Brasilia (UnB), Brasilia, DF, Brazil.

Health Sciences and Technologies Graduate Program, University of Brasilia (UnB), Centro Metropolitano, Conjunto A-Lote 01, Ceilândia, Brasília, 72220-900, DF, Brazil.

出版信息

Sci Rep. 2024 Sep 28;14(1):22505. doi: 10.1038/s41598-024-72965-0.


DOI:10.1038/s41598-024-72965-0
PMID:39341902
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11439022/
Abstract

This study aims to (1) compare the kinetics of pulmonary oxygen uptake (VO2p), skeletal muscle deoxygenation ([HHb]), and microvascular O delivery (QOmv) between heart failure (HF) patients with reduced ejection fraction (HFrEF) and those with preserved ejection fraction (HFpEF), and (2) explore the correlation between body composition, kinetic parameters, and exercise performance. Twenty-one patients (10 HFpEF and 11 HFrEF) underwent cardiopulmonary exercise testing to assess VO kinetics, with near-infrared spectroscopy (NIRS) employed to measure [HHb]. Microvascular O delivery (QOmv) was calculated using the Fick principle. Dual-energy X-ray absorptiometry (DEXA) was performed to evaluate body composition. HFrEF patients exhibited significantly slower VO kinetics (time constant [t]: 63 ± 10.8 s vs. 45.4 ± 7.9 s; P < 0.05) and quicker [HHb] response (t: 12.4 ± 9.9 s vs. 25 ± 11.6 s; P < 0.05). Microvascular O2 delivery (QOmv) was higher in HFrEF patients (3.6 ± 1.2 vs. 1.7 ± 0.8; P < 0.05), who also experienced shorter time to exercise intolerance (281.6 ± 84 s vs. 405.3 ± 96 s; P < 0.05). Correlation analyses revealed a significant negative relationship between time to exercise and both QOmv (ρ= -0.51; P < 0.05) and VO2 kinetics (ρ= -0.63). Body adiposity was negatively correlated with [HHb] amplitude (ρ= -0.78) and peak VO (ρ= -0.54), while a positive correlation was observed between lean muscle percentage, [HHb] amplitude, and tau (ρ= 0.74 and 0.57; P < 0.05), respectively. HFrEF patients demonstrate more severely impaired VO2p kinetics, skeletal muscle deoxygenation, and microvascular O delivery compared to HFpEF patients, indicating compromised peripheral function. Additionally, increased adiposity and reduced lean mass are linked to decreased oxygen diffusion capacity and impaired oxygen uptake kinetics in HFrEF patients.

摘要

本研究旨在:(1) 比较射血分数降低型心力衰竭(HFrEF)患者与射血分数保留型心力衰竭(HFpEF)患者的肺氧摄取(VO2p)、骨骼肌去氧([HHb])和微血管 O 输送(QOmv)动力学;(2) 探讨体成分、动力学参数与运动能力之间的相关性。21 例患者(HFpEF 组 10 例,HFrEF 组 11 例)行心肺运动试验以评估 VO2 动力学,采用近红外光谱(NIRS)测量 [HHb]。微血管 O 输送(QOmv)使用 Fick 原理计算。双能 X 射线吸收法(DEXA)评估体成分。HFrEF 患者的 VO2 动力学明显较慢(时变常数 [t]:63±10.8 s 比 45.4±7.9 s;P<0.05),[HHb]反应更快(t:12.4±9.9 s 比 25±11.6 s;P<0.05)。HFrEF 患者的微血管 O2 输送(QOmv)较高(3.6±1.2 比 1.7±0.8;P<0.05),运动不耐受时间也较短(281.6±84 s 比 405.3±96 s;P<0.05)。相关性分析显示,运动不耐受时间与 QOmv(ρ=-0.51;P<0.05)和 VO2 动力学(ρ=-0.63)呈显著负相关。体脂与 [HHb]幅度(ρ=-0.78)和峰值 VO(ρ=-0.54)呈负相关,而瘦肌肉百分比、[HHb]幅度和 tau 呈正相关(ρ=0.74 和 0.57;P<0.05)。与 HFpEF 患者相比,HFrEF 患者的 VO2p 动力学、骨骼肌去氧和微血管 O 输送受损更为严重,提示外周功能受损。此外,在 HFrEF 患者中,体脂增加和瘦肌肉减少与氧扩散能力降低和氧摄取动力学受损有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/161f62a53eca/41598_2024_72965_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/306390bb4a4e/41598_2024_72965_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/f97e5db2093c/41598_2024_72965_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/fa0045858e2b/41598_2024_72965_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/1f4f9f61e424/41598_2024_72965_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/161f62a53eca/41598_2024_72965_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/306390bb4a4e/41598_2024_72965_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/f97e5db2093c/41598_2024_72965_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/fa0045858e2b/41598_2024_72965_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/1f4f9f61e424/41598_2024_72965_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b5/11439022/161f62a53eca/41598_2024_72965_Fig5_HTML.jpg

相似文献

[1]
Differential impacts of body composition on oxygen kinetics and exercise tolerance of HFrEF and HFpEF patients.

Sci Rep. 2024-9-28

[2]
Effects of heavy-intensity priming exercise on pulmonary oxygen uptake kinetics and muscle oxygenation in heart failure with preserved ejection fraction.

Am J Physiol Regul Integr Comp Physiol. 2019-1-2

[3]
Differential Responses of Post-Exercise Recovery of Leg Blood Flow and Oxygen Uptake Kinetics in HFpEF versus HFrEF.

PLoS One. 2016-10-4

[4]
Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction.

Circ Heart Fail. 2015-3

[5]
Impaired oxygen uptake kinetics in heart failure with preserved ejection fraction.

Heart. 2019-6-17

[6]
Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass.

J Gerontol A Biol Sci Med Sci. 2013-3-22

[7]
Influence of priming exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity cycling in type 2 diabetes.

J Appl Physiol (1985). 2019-8-15

[8]
Post-Exercise Oxygen Uptake Recovery Delay: A Novel Index of Impaired Cardiac Reserve Capacity in Heart Failure.

JACC Heart Fail. 2018-3-7

[9]
Exercise Intolerance in Heart Failure With Preserved Ejection Fraction: Diagnosing and Ranking Its Causes Using Personalized O Pathway Analysis.

Circulation. 2017-10-9

[10]
Physiological dead space and arterial carbon dioxide contributions to exercise ventilatory inefficiency in patients with reduced or preserved ejection fraction heart failure.

Eur J Heart Fail. 2017-10-8

引用本文的文献

[1]
Exercise capacity in heart failure: a systematic review and meta-analysis of HFrEF and HFpEF disparities in VOpeak and 6-minute walking distance.

Eur Heart J Open. 2025-5-14

[2]
Association of predicted lean body mass and fat mass with prognosis in patients with heart failure preserved ejection fraction.

PLoS One. 2025-5-30

[3]
Development of a standardized single-session cardiopulmonary exercise test for combined assessment of peak oxygen uptake and on/off-kinetics.

Exp Physiol. 2025-3-20

[4]
Exercise Pulmonary Hypertension and Beyond: Insights in Exercise Pathophysiology in Pulmonary Arterial Hypertension (PAH) from Invasive Cardiopulmonary Exercise Testing.

J Clin Med. 2025-1-26

本文引用的文献

[1]
Impaired oxygen uptake kinetics in heart failure with preserved ejection fraction.

Heart. 2019-6-17

[2]
Regional Adipose Distribution and its Relationship to Exercise Intolerance in Older Obese Patients Who Have Heart Failure With Preserved Ejection Fraction.

JACC Heart Fail. 2018-7-11

[3]
Obesity-Related Heart Failure With a Preserved Ejection Fraction: The Mechanistic Rationale for Combining Inhibitors of Aldosterone, Neprilysin, and Sodium-Glucose Cotransporter-2.

JACC Heart Fail. 2018-3-7

[4]
Exercise limitations in heart failure with reduced and preserved ejection fraction.

J Appl Physiol (1985). 2017-10-19

[5]
2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC.

Eur Heart J. 2016-7-14

[6]
Growing Evidence Linking Microvascular Dysfunction With Heart Failure With Preserved Ejection Fraction.

J Am Heart Assoc. 2016-2-23

[7]
Variables Measured During Cardiopulmonary Exercise Testing as Predictors of Mortality in Chronic Systolic Heart Failure.

J Am Coll Cardiol. 2016-2-23

[8]
Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization.

Am J Physiol Heart Circ Physiol. 2015-11

[9]
Soothing the sleeping giant: improving skeletal muscle oxygen kinetics and exercise intolerance in HFpEF.

J Appl Physiol (1985). 2015-9-15

[10]
Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction.

Am J Physiol Heart Circ Physiol. 2014-3-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索