Huang Yu-Ming, Cheng Yuan-Chung
Department of Chemistry and Center for Quantum Science and Engineering, National Taiwan University, Taipei, 106, Taiwan (R.O.C.).
Physics Division, National Center for Theoretical Sciences, Taipei City, Taiwan.
Sci Rep. 2024 Sep 28;14(1):22488. doi: 10.1038/s41598-024-73307-w.
Reforming tar molecules into smaller gaseous molecules has been a critical challenge for biomass energy utilization. Hematite (α-FeO) has been demonstrated as an effective catalyst for the catalytic reforming of tar, nevertheless, the detailed mechanism of α-FeO catalyzed tar reforming remains unclear. In this work, we apply the density functional theory method to investigate this problem. Specifically, we study both (0001) and (01[Formula: see text]2) surface structures of α-FeO and then use the structures to investigate the adsorption and C-C bond cleavage of benzene on these surfaces. Our results show that the dominant interactions between benzene and a single Fe-terminated (0001) surface are van der Waals forces, yet benzene could be chemisorbed on the Fe and O co-exposed (01[Formula: see text]2) surface via strong C-O interactions. As a result, the (0001) surface is not active towards benzene cleavage, whereas the (01[Formula: see text]2) surface can promote the aromatic C-C bond breaking. Furthermore, our calculations indicate that chain-like alkene species and carbonyl species are the two types of potential products that form after the C-C bond cleavage of benzene on the α-FeO (01[Formula: see text]2) surface, with the activation energy of 1.78 eV and 2.62 eV, respectively. In summary, we reveal the importance of co-adsorption on both Fe and O centers and oxidative addition on C-C bond cleavage of aromatic compounds on the α-FeO surface, which provides novel insights into the mechanisms of tar cracking on oxide catalysts.
将焦油分子重整为更小的气态分子一直是生物质能源利用中的一项关键挑战。赤铁矿(α-Fe₂O₃)已被证明是一种有效的焦油催化重整催化剂,然而,α-Fe₂O₃催化焦油重整的详细机制仍不清楚。在这项工作中,我们应用密度泛函理论方法来研究这个问题。具体而言,我们研究了α-Fe₂O₃的(0001)和(01[公式:见正文]2)表面结构,然后利用这些结构研究苯在这些表面上的吸附和C-C键裂解。我们的结果表明,苯与单个Fe终止的(0001)表面之间的主要相互作用是范德华力,但苯可以通过强C-O相互作用化学吸附在Fe和O共暴露的(01[公式:见正文]2)表面上。因此,(0001)表面对苯裂解不活跃,而(01[公式:见正文]2)表面可以促进芳族C-C键的断裂。此外,我们的计算表明,链状烯烃物种和羰基物种是苯在α-Fe₂O₃(01[公式:见正文]2)表面上的C-C键裂解后形成的两种潜在产物,活化能分别为1.78 eV和2.62 eV。总之,我们揭示了在α-Fe₂O₃表面上Fe和O中心的共吸附以及芳族化合物C-C键裂解上的氧化加成的重要性,这为氧化物催化剂上焦油裂解的机制提供了新的见解。