Suppr超能文献

去雾网络:用于单幅图像去雾的端到端系统。

DehazeNet: An End-to-End System for Single Image Haze Removal.

出版信息

IEEE Trans Image Process. 2016 Nov;25(11):5187-5198. doi: 10.1109/TIP.2016.2598681.

Abstract

Single image haze removal is a challenging ill-posed problem. Existing methods use various constraints/priors to get plausible dehazing solutions. The key to achieve haze removal is to estimate a medium transmission map for an input hazy image. In this paper, we propose a trainable end-to-end system called DehazeNet, for medium transmission estimation. DehazeNet takes a hazy image as input, and outputs its medium transmission map that is subsequently used to recover a haze-free image via atmospheric scattering model. DehazeNet adopts convolutional neural network-based deep architecture, whose layers are specially designed to embody the established assumptions/priors in image dehazing. Specifically, the layers of Maxout units are used for feature extraction, which can generate almost all haze-relevant features. We also propose a novel nonlinear activation function in DehazeNet, called bilateral rectified linear unit, which is able to improve the quality of recovered haze-free image. We establish connections between the components of the proposed DehazeNet and those used in existing methods. Experiments on benchmark images show that DehazeNet achieves superior performance over existing methods, yet keeps efficient and easy to use.

摘要

单幅图像去雾是一个具有挑战性的不适定问题。现有的方法使用各种约束/先验来得到合理的去雾解决方案。实现去雾的关键是估计输入雾化图像的中间传输图。在本文中,我们提出了一种名为 DehazeNet 的可训练端到端系统,用于中间传输估计。DehazeNet 以雾化图像作为输入,并输出其中间传输图,随后通过大气散射模型恢复无雾图像。DehazeNet 采用基于卷积神经网络的深度架构,其层专门设计用于体现图像去雾中的既定假设/先验。具体来说,Maxout 单元的层用于特征提取,可以生成几乎所有与雾化相关的特征。我们还在 DehazeNet 中提出了一种新的非线性激活函数,称为双边修正线性单元,它能够提高恢复无雾图像的质量。我们建立了所提出的 DehazeNet 的组件与现有方法中使用的组件之间的联系。在基准图像上的实验表明,DehazeNet 优于现有方法,同时保持高效和易用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验