Suppr超能文献

基于 Shapley 值和互信息的强化学习特征选择:在预测终末期肾病患者术后结局中的应用。

Feature selection integrating Shapley values and mutual information in reinforcement learning: An application in the prediction of post-operative outcomes in patients with end-stage renal disease.

机构信息

Soonchunhyang University, Department of ICT Convergence, Asan, 31538, Republic of Korea.

Soonchunhyang University Seoul Hospital, Anesthesiology and Pain Medicine, Seoul, 04401, Republic of Korea.

出版信息

Comput Methods Programs Biomed. 2024 Dec;257:108416. doi: 10.1016/j.cmpb.2024.108416. Epub 2024 Sep 21.

Abstract

BACKGROUND

In predicting post-operative outcomes for patients with end-stage renal disease, our study faced challenges related to class imbalance and a high-dimensional feature space. Therefore, with a focus on overcoming class imbalance and improving interpretability, we propose a novel feature selection approach using multi-agent reinforcement learning.

METHODS

We proposed a multi-agent feature selection model based on a comprehensive reward function that combines classification model performance, Shapley additive explanations values, and the mutual information. The definition of rewards in reinforcement learning is crucial for model convergence and performance improvement. Initially, we set a deterministic reward based on the mutual information between variables and the target class, selecting variables that are highly dependent on the class, thus accelerating convergence. We then prioritized variables that influence the minority class on a sample basis and introduced a dynamic reward distribution strategy using Shapley additive explanations values to improve interpretability and solve the class imbalance problem.

RESULTS

Involving the integration of electronic medical records, anesthesia records, operating room vital signs, and pre-operative anesthesia evaluations, our approach effectively mitigated class imbalance and demonstrated superior performance in ablation analysis. Our model achieved a 16% increase in the minority class F1 score and an 8.2% increase in the overall F1 score compared to the baseline model without feature selection.

CONCLUSION

This study contributes important research findings that show that the multi-agent-based feature selection method can be a promising approach for solving the class imbalance problem.

摘要

背景

在预测终末期肾病患者的术后结果时,我们的研究面临着类不平衡和高维特征空间的挑战。因此,我们专注于克服类不平衡和提高可解释性,提出了一种使用多代理强化学习的新特征选择方法。

方法

我们提出了一种基于综合奖励函数的多代理特征选择模型,该函数结合了分类模型性能、Shapley 可加解释值和互信息。强化学习中奖励的定义对于模型的收敛和性能的提高至关重要。最初,我们根据变量和目标类之间的互信息以及变量对类的依赖程度设置了一个确定性奖励,从而选择了高度依赖于类的变量,从而加速了收敛。然后,我们根据样本中对少数类的影响来优先选择变量,并使用 Shapley 可加解释值引入动态奖励分配策略,以提高可解释性和解决类不平衡问题。

结果

通过整合电子病历、麻醉记录、手术室生命体征和术前麻醉评估,我们的方法有效地缓解了类不平衡,并在消融分析中表现出了优异的性能。与没有特征选择的基线模型相比,我们的模型在少数类 F1 得分上提高了 16%,在整体 F1 得分上提高了 8.2%。

结论

这项研究提供了重要的研究结果,表明基于多代理的特征选择方法是解决类不平衡问题的一种有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验