Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Munich, Germany.
JMIR Med Inform. 2024 Sep 20;12:e52837. doi: 10.2196/52837.
Acute kidney injury (AKI) is a common adverse outcome following nephrectomy. The progression from AKI to acute kidney disease (AKD) and subsequently to chronic kidney disease (CKD) remains a concern; yet, the predictive mechanisms for these transitions are not fully understood. Interpretable machine learning (ML) models offer insights into how clinical features influence long-term renal function outcomes after nephrectomy, providing a more precise framework for identifying patients at risk and supporting improved clinical decision-making processes.
This study aimed to (1) evaluate postnephrectomy rates of AKI, AKD, and CKD, analyzing long-term renal outcomes along different trajectories; (2) interpret AKD and CKD models using Shapley Additive Explanations values and Local Interpretable Model-Agnostic Explanations algorithm; and (3) develop a web-based tool for estimating AKD or CKD risk after nephrectomy.
We conducted a retrospective cohort study involving patients who underwent nephrectomy between July 2012 and June 2019. Patient data were randomly split into training, validation, and test sets, maintaining a ratio of 76.5:8.5:15. Eight ML algorithms were used to construct predictive models for postoperative AKD and CKD. The performance of the best-performing models was assessed using various metrics. We used various Shapley Additive Explanations plots and Local Interpretable Model-Agnostic Explanations bar plots to interpret the model and generated directed acyclic graphs to explore the potential causal relationships between features. Additionally, we developed a web-based prediction tool using the top 10 features for AKD prediction and the top 5 features for CKD prediction.
The study cohort comprised 1559 patients. Incidence rates for AKI, AKD, and CKD were 21.7% (n=330), 15.3% (n=238), and 10.6% (n=165), respectively. Among the evaluated ML models, the Light Gradient-Boosting Machine (LightGBM) model demonstrated superior performance, with an area under the receiver operating characteristic curve of 0.97 for AKD prediction and 0.96 for CKD prediction. Performance metrics and plots highlighted the model's competence in discrimination, calibration, and clinical applicability. Operative duration, hemoglobin, blood loss, urine protein, and hematocrit were identified as the top 5 features associated with predicted AKD. Baseline estimated glomerular filtration rate, pathology, trajectories of renal function, age, and total bilirubin were the top 5 features associated with predicted CKD. Additionally, we developed a web application using the LightGBM model to estimate AKD and CKD risks.
An interpretable ML model effectively elucidated its decision-making process in identifying patients at risk of AKD and CKD following nephrectomy by enumerating critical features. The web-based calculator, found on the LightGBM model, can assist in formulating more personalized and evidence-based clinical strategies.
急性肾损伤(AKI)是肾切除术后常见的不良结局。从 AKI 进展为急性肾脏病(AKD)和随后的慢性肾脏病(CKD)仍然令人担忧;然而,这些转变的预测机制尚未完全了解。可解释的机器学习(ML)模型提供了关于临床特征如何影响肾切除术后长期肾功能结局的见解,为识别风险患者提供了更精确的框架,并支持改进临床决策过程。
本研究旨在(1)评估肾切除术后 AKI、AKD 和 CKD 的发生率,分析不同轨迹的长期肾脏结局;(2)使用 Shapley 加法解释值和局部可解释模型不可知解释算法解释 AKD 和 CKD 模型;(3)开发一个用于估计肾切除术后 AKD 或 CKD 风险的基于网络的工具。
我们进行了一项回顾性队列研究,涉及 2012 年 7 月至 2019 年 6 月期间接受肾切除术的患者。患者数据被随机分为训练集、验证集和测试集,保持 76.5:8.5:15 的比例。使用八种 ML 算法构建术后 AKD 和 CKD 的预测模型。使用各种指标评估最佳模型的性能。我们使用各种 Shapley 加法解释图和局部可解释模型不可知解释条形图来解释模型,并生成有向无环图来探索特征之间的潜在因果关系。此外,我们使用 AKD 预测的前 10 个特征和 CKD 预测的前 5 个特征开发了一个基于网络的预测工具。
研究队列包括 1559 名患者。AKI、AKD 和 CKD 的发生率分别为 21.7%(n=330)、15.3%(n=238)和 10.6%(n=165)。在所评估的 ML 模型中,Light Gradient-Boosting Machine(LightGBM)模型表现出色,其 AKD 预测的受试者工作特征曲线下面积为 0.97,CKD 预测的面积为 0.96。性能指标和图表突出了模型在区分、校准和临床适用性方面的能力。手术时间、血红蛋白、失血量、尿蛋白和血细胞比容被确定为与预测 AKD 相关的前 5 个特征。基线估计肾小球滤过率、病理、肾功能轨迹、年龄和总胆红素是与预测 CKD 相关的前 5 个特征。此外,我们还使用 LightGBM 模型开发了一个基于网络的应用程序来估计 AKD 和 CKD 的风险。
可解释的 ML 模型通过列举关键特征,有效地阐明了其在识别肾切除术后 AKD 和 CKD 风险患者方面的决策过程。基于 LightGBM 模型的网络计算器可以帮助制定更具个性化和循证的临床策略。