LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP , 31326 Castanet-Tolosan, France.
Max-Planck-Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1 , Potsdam-Golm 14476, Germany.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230369. doi: 10.1098/rstb.2023.0369. Epub 2024 Sep 30.
The arbuscular mycorrhizal (AM) symbiosis formed by most extant land plants with symbiotic fungi evolved 450 Ma. AM promotes plant growth by improving mineral nutrient and water uptake, while the symbiotic fungi obtain carbon in return. A number of plant genes regulating the steps leading to an efficient symbiosis have been identified; however, our understanding of the metabolic processes involved in the symbiosis and how they were wired to symbiosis regulation during plant evolution remains limited. Among them, the exchange of chemical signals, the activation of dedicated biosynthesis pathways and the production of secondary metabolites regulating late stages of the AM symbiosis begin to be well described across several land plant clades. Here, we review our current understanding of these processes and propose future directions to fully grasp the phylogenetic distribution and role played by small molecules during this ancient plant symbiosis. This article is part of the theme issue 'The evolution of plant metabolism'.
丛枝菌根(AM)共生体由大多数现存的陆地植物与共生真菌形成,其进化发生在 4.5 亿年前。AM 通过改善矿物质养分和水分的吸收来促进植物生长,而共生真菌则获得碳作为回报。已经鉴定出了许多调节向有效共生体发展的步骤的植物基因;然而,我们对共生体涉及的代谢过程以及它们在植物进化过程中如何与共生体调节相联系的理解仍然有限。其中,化学信号的交换、专门生物合成途径的激活以及调节 AM 共生体后期的次生代谢物的产生,在几个陆地植物类群中开始得到很好的描述。在这里,我们回顾了我们对这些过程的理解,并提出了未来的方向,以充分掌握这些小分子在这种古老的植物共生关系中的系统发生分布和作用。本文是“植物代谢进化”专题的一部分。