Suppr超能文献

基于焦虑、抑郁和睡眠项目构建和评估两种用于筛查重度抑郁症和阈下抑郁个体的列线图。

Construction and evaluation of two nomograms for screening major depressive disorder and subthreshold depression individuals based on anxiety, depression, and sleep items.

机构信息

Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China.

Peking University Sixth Hospital, Beijing, China; Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), Beijing, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.

出版信息

J Affect Disord. 2025 Jan 15;369:288-297. doi: 10.1016/j.jad.2024.09.142. Epub 2024 Sep 28.

Abstract

BACKGROUND

Current evidence is insufficient to support specific tools for screening Major Depressive Disorder (MDD). Early detection of subthreshold depression (SD) is crucial in preventing its progression to MDD. This study aims to develop nomograms that visualize the weights of predictors to improve the performance of screening tools.

METHODS

Participants were recruited from Peking University Sixth Hospital and Beijing Physical Examination Center between October 2022 and April 2024. The Mini-International Neuropsychiatric Interview (MINI) 5.0.0 was employed as the diagnostic gold standard, and Generalized Anxiety Disorder questionnaire-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9), and Pittsburgh Sleep Quality Index (PSQI) were employed to assess anxiety, depression, and sleep state. The nomograms were constructed by incorporating optimal predictors, selected through the Least Absolute Shrinkage and Selection Operator (LASSO), into a multivariate logistic regression model to estimate the probability of MDD and SD.

RESULTS

After matching age and education, 164 participants were included in each group for analysis. Both nomograms demonstrated superior discrimination, calibration, and clinical applicability compared to PHQ-9. Anxiety emerged as a most significant predictor for SD, while sleep problems exhibited high rankings for both SD and MDD. The two predictors subsequently affect concentration and daytime functioning.

LIMITATIONS

With a lack of external validation data, the performance of nomograms may be overestimated.

CONCLUSIONS

This study is the first attempt to develop a nomogram for predicting SD, while also providing a nomogram for MDD. The crucial predictors offer valuable insights into potential variables for clinical intervention.

摘要

背景

目前的证据不足以支持用于筛查重度抑郁症(MDD)的特定工具。早期发现阈下抑郁(SD)对于防止其发展为 MDD 至关重要。本研究旨在开发可直观显示预测因子权重的列线图,以提高筛查工具的性能。

方法

参与者于 2022 年 10 月至 2024 年 4 月期间从北京大学第六医院和北京体检中心招募。采用 Mini-International Neuropsychiatric Interview(MINI)5.0.0 作为诊断金标准,采用广泛性焦虑障碍问卷-7(GAD-7)、患者健康问卷-9(PHQ-9)和匹兹堡睡眠质量指数(PSQI)评估焦虑、抑郁和睡眠状态。通过将 LASSO 选择的最佳预测因子纳入多变量逻辑回归模型,构建列线图来估计 MDD 和 SD 的概率。

结果

在匹配年龄和教育程度后,每组有 164 名参与者纳入分析。与 PHQ-9 相比,两个列线图均表现出更好的判别力、校准度和临床适用性。焦虑是 SD 的最重要预测因子,而睡眠问题对 SD 和 MDD 均具有较高的排名。这两个预测因子随后影响注意力和日间功能。

局限性

由于缺乏外部验证数据,列线图的性能可能被高估。

结论

本研究首次尝试开发用于预测 SD 的列线图,同时也提供了用于 MDD 的列线图。关键预测因子为临床干预的潜在变量提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验