Suppr超能文献

探索灰色地带:机器学习可区分PI-RADS 3类病变中的恶性肿瘤。

Navigating the gray zone: Machine learning can differentiate malignancy in PI-RADS 3 lesions.

作者信息

Altıntaş Emre, Şahin Ali, Erol Seyit, Özer Halil, Gül Murat, Batur Ali Furkan, Kaynar Mehmet, Kılıç Özcan, Göktaş Serdar

机构信息

Department of Urology, Selcuk University School of Medicine, Konya, Turkey.

Selcuk University School of Medicine, Konya, Turkey.

出版信息

Urol Oncol. 2025 Mar;43(3):195.e11-195.e20. doi: 10.1016/j.urolonc.2024.09.004. Epub 2024 Sep 28.

Abstract

INTRODUCTION

The objective of this study is to predict the probability of prostate cancer in PI-RADS 3 lesions using machine learning methods that incorporate clinical and mpMRI parameters.

METHODS

The study included patients who had PI-RADS 3 lesions detected on mpMRI and underwent fusion biopsy between January 2020 and January 2024. Radiological parameters (Apparent diffusion coefficient (ADC), tumour ADC/contralateral ADC ratio, Ktrans value, periprostatic adipose tissue thickness, lesion size, prostate volume) and clinical parameters (age, body mass index, total prostate specific antigen, free PSA, PSA density, systemic inflammatory index, neutrophil-lymphocyte ratio [NLR], platelet lymphocyte ratio, lymphocyte monocyte ratio) were documented. The probability of prostate cancer prediction in PI-RADS 3 lesions was calculated using 6 different machine-learning models, with the input parameters being the aforementioned variables.

RESULTS

Of the 235 participants in the trial, 61 had malignant fusion biopsy pathology and 174 had benign pathology. Among 6 different machine learning algorithms, the random forest model had the highest accuracy (0.86±0.04; 95% CI 0.85-0.87), F1 score (0.91±0.03; 95% CI 0.91-0.92) and AUC value (0.92±0.06; 95% CI 0.88-0.90). In SHAP analysis based on random forest model, tumour ADC, tumour ADC/contralateral ADC ratio and PSA density were the 3 most successful parameters in predicting malignancy. On the other hand, systemic inflammatory index and neutrophil lymphocyte ratio showed higher accuracy in predicting malignancy than total PSA, age, free PSA/total PSA and lesion size in SHAP analysis.

CONCLUSION

Among the machine learning models we developed, especially the random forest model can predict malignancy in PI-RADS 3 lesions and prevent unnecessary biopsy. This model can be used in clinical practice with multicentre studies including more patients.

摘要

引言

本研究的目的是使用结合临床和多参数磁共振成像(mpMRI)参数的机器学习方法预测PI-RADS 3类病变中前列腺癌的概率。

方法

该研究纳入了在2020年1月至2024年1月期间经mpMRI检测出PI-RADS 3类病变并接受融合活检的患者。记录了放射学参数(表观扩散系数(ADC)、肿瘤ADC/对侧ADC比值、Ktrans值、前列腺周围脂肪组织厚度、病变大小、前列腺体积)和临床参数(年龄、体重指数、总前列腺特异性抗原、游离PSA、PSA密度、全身炎症指数、中性粒细胞-淋巴细胞比值[NLR]、血小板淋巴细胞比值、淋巴细胞单核细胞比值)。使用6种不同的机器学习模型计算PI-RADS 3类病变中前列腺癌预测的概率,输入参数为上述变量。

结果

在该试验的235名参与者中,61人融合活检病理为恶性,174人病理为良性。在6种不同的机器学习算法中,随机森林模型具有最高的准确率(0.86±0.04;95%置信区间0.85 - 0.87)、F1分数(0.91±0.03;95%置信区间0.91 - 0.92)和AUC值(0.92±0.06;95%置信区间0.88 - 0.90)。在基于随机森林模型的SHAP分析中,肿瘤ADC、肿瘤ADC/对侧ADC比值和PSA密度是预测恶性肿瘤最成功的3个参数。另一方面,在SHAP分析中,全身炎症指数和中性粒细胞淋巴细胞比值在预测恶性肿瘤方面比总PSA、年龄、游离PSA/总PSA和病变大小显示出更高的准确率。

结论

在我们开发的机器学习模型中,特别是随机森林模型可以预测PI-RADS 3类病变中的恶性肿瘤并避免不必要的活检。该模型可通过纳入更多患者的多中心研究应用于临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验