Moreno César, Diaz de Cerio Xabier, Tenorio Maria, Gao Fei, Vilas-Varela Manuel, Sarasola Ane, Peña Diego, Garcia-Lekue Aran, Mugarza Aitor
Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, Santander, Spain.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193, Barcelona, Spain.
Commun Chem. 2024 Sep 29;7(1):219. doi: 10.1038/s42004-024-01284-2.
Advancements in the on-surface synthesis of atomically precise graphene nanostructures are propelled by the introduction of innovative precursor designs and reaction types. Until now, the latter has been confined to cross-coupling and cyclization reactions that involve the cleavage of specific atoms or groups. In this article, we elucidate how the migration of phenyl substituents attached to graphene nanoribbons can be harnessed to generate arrays of [18]-annulene pores at the edges of the nanostructures. This sequential pathway is revealed through a comprehensive study employing bond-resolved scanning tunneling microscopy and ab-initio computational techniques. The yield of pore formation is maximized by anchoring the graphene nanoribbons at steps of vicinal surfaces, underscoring the potential of these substrates to guide reaction paths. Our study introduces a new reaction to the on-surface synthesis toolbox along with a sequential route, altogether enabling the extension of this strategy towards the formation of other porous nanostructures.
创新前驱体设计和反应类型的引入推动了原子精确石墨烯纳米结构表面合成的进展。到目前为止,后者仅限于涉及特定原子或基团裂解的交叉偶联和环化反应。在本文中,我们阐明了如何利用连接在石墨烯纳米带上的苯基取代基的迁移,在纳米结构的边缘生成[18] - 轮烯孔阵列。通过使用键分辨扫描隧道显微镜和从头算计算技术的全面研究揭示了这一连续途径。通过将石墨烯纳米带锚定在相邻表面的台阶上,使孔形成的产率最大化,突出了这些衬底引导反应路径的潜力。我们的研究为表面合成工具箱引入了一种新反应以及一条连续途径,共同使该策略能够扩展到其他多孔纳米结构的形成。