NSW Department of Primary Industries and Regional Development, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
BMC Plant Biol. 2024 Sep 30;24(1):892. doi: 10.1186/s12870-024-05596-2.
Understanding the genetic control of pod shatter resistance and its association with pod length is crucial for breeding improved pod shatter resistance and reducing pre-harvest yield losses due to extensive shattering in cultivars of Brassica species. In this study, we evaluated a doubled haploid (DH) mapping population derived from an F cross between two Brassica carinata parental lines Y-BcDH64 and W-BcDH76 (YWDH), originating from Ethiopia and determined genetic bases of variation in pod length and pod shatter resistance, measured as rupture energy. The YWDH population, its parental lines and 11 controls were grown across three years for genetic analysis.
By using three quantitative trait loci (QTL) analytic approaches, we identified nine genomic regions on B02, B03, B04, B06, B07 and C01 chromosomes for rupture energy that were repeatedly detected across three growing environments. One of the QTL on chromosome B07, flanked with DArTseq markers 100,046,735 and 100,022,658, accounted for up to 27.6% of genetic variance in rupture energy. We observed no relationship between pod length and rupture energy, suggesting that pod length does not contribute to variation in pod shatter resistance. Comparative mapping identified six candidate genes; SHP1 on B6, FUL and MAN on chromosomes B07, IND and NST2 on B08, and MAN7 on C07 that mapped within 0.2 Mb from the QTL for rupture energy.
The results suggest that favourable alleles of stable QTL on B06, B07, B08 and C01 for pod shatter resistance can be incorporated into the shatter-prone B. carinata and its related species to improve final seed yield at harvest.
了解荚果抗裂荚性的遗传控制及其与荚长的关系对于培育改良的抗裂荚性品种和减少由于 Brassica 物种品种广泛裂荚而导致的收获前产量损失至关重要。在这项研究中,我们评估了来自埃塞俄比亚的两个甘蓝型油菜亲本系 Y-BcDH64 和 W-BcDH76(YWDH)的 F1 杂交衍生的加倍单倍体(DH)作图群体,并确定了荚长和荚裂抗性(以破裂能衡量)的遗传变异基础。YWDH 群体及其亲本系和 11 个对照在三年内种植,以进行遗传分析。
通过使用三种数量性状位点(QTL)分析方法,我们在 B02、B03、B04、B06、B07 和 C01 染色体上鉴定了 9 个与破裂能相关的基因组区域,这些区域在三个生长环境中都得到了重复检测。在 B07 染色体上的一个 QTL,其侧翼是 DArTseq 标记 100,046,735 和 100,022,658,占破裂能遗传方差的 27.6%。我们没有观察到荚长和破裂能之间的关系,这表明荚长不能导致荚裂抗性的变异。比较作图鉴定了六个候选基因;B6 上的 SHP1、B07 上的 FUL 和 MAN、B08 上的 IND 和 NST2,以及 C07 上的 MAN7,它们都位于与破裂能相关的 QTL 0.2 Mb 以内。
结果表明,B06、B07、B08 和 C01 上稳定的 QTL 对荚裂抗性的有利等位基因可以被整合到易感裂荚的甘蓝型油菜及其相关物种中,以提高收获时的最终种子产量。