Suppr超能文献

通过缺陷协同增强La掺杂BiFeO纳米颗粒的压电催化响应

Enhancement of the Piezocatalytic Response of La-Doped BiFeO Nanoparticles by Defects Synergy.

作者信息

Amdouni Wafa, Otoničar Mojca, Alamarguy David, Erdem Emre, Gemeiner Pascale, Mazaleyrat Frédéric, Maghraoui-Meherzi Hager, Kreisel Jens, Glinsek Sebastjan, Dkhil Brahim

机构信息

CentraleSupélec, Laboratoire Structures, Propriétés et Modélisation des Solides, Université Paris-Saclay, UMR CNRS 8580, Gif-sur-Yvette, 91190, France.

Faculté des Sciences de Tunis, Laboratoire de Chimie Analytique et Électrochimie LR99ES15, Campus Universitaire de Tunis El-Manar, Université de Tunis El-Manar, Tunis, 2092, Tunisie.

出版信息

Small. 2024 Dec;20(50):e2406425. doi: 10.1002/smll.202406425. Epub 2024 Sep 30.

Abstract

Because of their intrinsic polarization and related properties, ferroelectrics attract significant attention to address energy transformation and environmental protection. Here, by using trivalent-ion-lanthanum doping of BiFeO nanoparticles (NPs), it is shown that defects and piezoelectric potential are synergized to achieve a high piezocatalytic effect for decomposing the model Rhodamine B (RhB) pollutant, reaching a record-high piezocatalytic rate of 21 360 L mol min (i.e., 100% RhB degradation within 20 min) that exceeds most state-of-the art ferroelectrics. The piezocatalytic BiLaFeO NPs are also demonstrated to be versatile toward various pharmaceutical pollutants with over 90% removal efficiency, making them extremely efficient piezocatalysts for water purification. It is also shown that 1% La-doping introduces oxygen vacancies and Fe defects. It is thus suggested that oxygen vacancies act as both active sites and charge providers, permitting more surface adsorption sites for the piezocatalysis process, and additional charges and better energy transfer between the NPs and surrounding molecules. Furthermore, the oxygen vacancies are proposed to couple to Fe to form defect dipoles, which in turn introduces an internal field, resulting in more efficient charge de-trapping and separation when added to the piezopotential. This synergistic mechanism is believed to provide a new perspective for designing future piezocatalysts with high performance.

摘要

由于其固有的极化特性及相关性质,铁电体在解决能量转换和环境保护问题方面引起了广泛关注。在此,通过对BiFeO纳米颗粒(NPs)进行三价离子镧掺杂,研究表明缺陷和压电势协同作用,对模型罗丹明B(RhB)污染物实现了高效的压电催化分解,达到了创纪录的21360 L mol⁻¹ min⁻¹的压电催化速率(即20分钟内RhB降解率达100%),超过了大多数现有铁电体。压电催化BiLaFeO NPs对各种药物污染物也表现出通用性,去除效率超过90%,使其成为用于水净化的极其高效的压电催化剂。研究还表明,1%的La掺杂引入了氧空位和Fe缺陷。因此,有人提出氧空位既是活性位点又是电荷提供者,为压电催化过程提供了更多的表面吸附位点,以及额外的电荷和NPs与周围分子之间更好的能量转移。此外,有人提出氧空位与Fe耦合形成缺陷偶极子,进而引入内场,在加入压电势时导致更有效的电荷去俘获和分离。这种协同机制有望为设计未来高性能压电催化剂提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdf2/11636164/260739bcd424/SMLL-20-2406425-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验