School of Medicine, Nankai University, Tianjin, 300071, China.
Adv Mater. 2024 Nov;36(47):e2408485. doi: 10.1002/adma.202408485. Epub 2024 Sep 30.
Screening probiotics with specific functions is essential for advancing probiotic research. Current screening methods primarily use animal studies or clinical trials, which are inefficient and costly in terms of time, money, and labor. An intelligent intestine-on-a-chip integrating machine learning (ML) is developed to screen relief-enteritis functional probiotics. A high-throughput microfluidic chip combined with environment control systems provides a standardized and scalable intestinal microenvironment for multiple probiotic cocultures. An unsupervised ML-based score analyzer is constructed to accurately, comprehensively, and efficiently evaluate interactions between 12 Bifidobacterium strains and host cells of the colitis model in the intestine-on-a-chips. The most effective contender, Bifidobacterium longum 3-14, is discovered to relieve intestinal inflammation and enhance epithelial barrier function in vitro and in vivo. A distinct advantage of this strategy is that it can intelligently differentiate small therapeutic variations in probiotic strains and prioritize their efficacies, allowing for economical, efficient, accurate functional probiotics screening.
筛选具有特定功能的益生菌对于推进益生菌研究至关重要。目前的筛选方法主要使用动物研究或临床试验,从时间、金钱和劳动力的角度来看,这些方法效率低下且成本高昂。本研究开发了一种集成机器学习(ML)的智能肠道芯片,用于筛选缓解肠炎功能的益生菌。高通量微流控芯片结合环境控制系统为多种益生菌共培养提供了标准化和可扩展的肠道微环境。构建了一种基于无监督 ML 的评分分析器,以准确、全面、有效地评估肠道芯片中 12 株双歧杆菌菌株与结肠炎模型宿主细胞之间的相互作用。发现最有效的竞争者长双歧杆菌 3-14 能够缓解肠道炎症并增强体外和体内的上皮屏障功能。该策略的一个显著优势是能够智能区分益生菌菌株的微小治疗差异,并优先考虑其疗效,从而实现经济、高效、准确的功能益生菌筛选。