Bergquist Timothy, Stenton Sarah L, Nadeau Emily A W, Byrne Alicia B, Greenblatt Marc S, Harrison Steven M, Tavtigian Sean V, O'Donnell-Luria Anne, Biesecker Leslie G, Radivojac Predrag, Brenner Steven E, Pejaver Vikas
Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
bioRxiv. 2024 Sep 21:2024.09.17.611902. doi: 10.1101/2024.09.17.611902.
We previously developed an approach to calibrate computational tools for clinical variant classification, updating recommendations for the reliable use of variant impact predictors to provide evidence strength up to . A new generation of tools using distinctive approaches have since been released, and these methods must be independently calibrated for clinical application.
Using our local posterior probability-based calibration and our established data set of ClinVar pathogenic and benign variants, we determined the strength of evidence provided by three new tools (AlphaMissense, ESM1b, VARITY) and calibrated scores meeting each evidence strength.
All three tools reached the level of evidence for variant pathogenicity and for benignity, though sometimes for few variants. Compared to previously recommended tools, these yielded at best only modest improvements in the tradeoffs of evidence strength and false positive predictions.
At calibrated thresholds, three new computational predictors provided evidence for variant pathogenicity at similar strength to the four previously recommended predictors (and comparable with functional assays for some variants). This calibration broadens the scope of computational tools for application in clinical variant classification. Their new approaches offer promise for future advancement of the field.
我们之前开发了一种方法来校准用于临床变异分类的计算工具,更新了变异影响预测器可靠使用的建议,以提供高达[具体证据强度]的证据强度。此后发布了新一代采用独特方法的工具,这些方法必须针对临床应用进行独立校准。
使用我们基于局部后验概率的校准方法以及我们已建立的ClinVar致病性和良性变异数据集,我们确定了三种新工具(AlphaMissense、ESM1b、VARITY)提供的证据强度,并校准了符合每种证据强度的分数。
所有这三种工具都达到了变异致病性的[具体证据强度]水平和良性的[具体证据强度]水平,尽管有时仅针对少数变异。与之前推荐的工具相比,这些工具在证据强度和假阳性预测的权衡方面充其量仅产生了适度的改进。
在校准阈值下,三种新的计算预测器为变异致病性提供的证据强度与之前推荐的四种预测器相似(并且对于某些变异与功能测定相当)。这种校准拓宽了用于临床变异分类的计算工具的应用范围。它们的新方法为该领域的未来发展带来了希望。