Hingerl Johannes C, Martens Laura D, Karollus Alexander, Manz Trevor, Buenrostro Jason D, Theis Fabian J, Gagneur Julien
School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
Munich Center for Machine Learning, Munich, Germany.
bioRxiv. 2025 Mar 13:2024.09.19.613754. doi: 10.1101/2024.09.19.613754.
Understanding how regulatory DNA elements shape gene expression across individual cells is a fundamental challenge in genomics. Joint RNA-seq and epigenomic profiling provides opportunities to build unifying models of gene regulation capturing sequence determinants across steps of gene expression. However, current models, developed primarily for bulk omics data, fail to capture the cellular heterogeneity and dynamic processes revealed by single-cell multi-modal technologies. Here, we introduce scooby, the first framework to model scRNA-seq coverage and scATAC-seq insertion profiles along the genome from sequence at single-cell resolution. For this, we leverage the pre-trained multi-omics profile predictor Borzoi as a foundation model, equip it with a cell-specific decoder, and fine-tune its sequence embeddings. Specifically, we condition the decoder on the cell position in a precomputed single-cell embedding resulting in strong generalization capability. Applied to a hematopoiesis dataset, scooby recapitulates cell-specific expression levels of held-out genes, and identifies regulators and their putative target genes through in silico motif deletion. Moreover, accurate variant effect prediction with scooby allows for breaking down bulk eQTL effects into single-cell effects and delineating their impact on chromatin accessibility and gene expression. We anticipate scooby to aid unraveling the complexities of gene regulation at the resolution of individual cells.
了解调控性DNA元件如何在单个细胞中塑造基因表达是基因组学中的一项基本挑战。联合RNA测序和表观基因组分析为构建统一的基因调控模型提供了机会,该模型能够捕捉基因表达各个步骤中的序列决定因素。然而,目前主要为批量组学数据开发的模型,无法捕捉单细胞多模态技术所揭示的细胞异质性和动态过程。在这里,我们介绍了scooby,这是首个以单细胞分辨率从序列出发对全基因组范围内的scRNA-seq覆盖度和scATAC-seq插入图谱进行建模的框架。为此,我们利用预训练的多组学图谱预测器Borzoi作为基础模型,为其配备细胞特异性解码器,并对其序列嵌入进行微调。具体而言,我们根据预计算的单细胞嵌入中的细胞位置对解码器进行条件设定,从而获得强大的泛化能力。应用于造血数据集时,scooby概括了保留基因的细胞特异性表达水平,并通过计算机模拟基序缺失鉴定调控因子及其假定的靶基因。此外,利用scooby进行准确的变异效应预测,可以将批量eQTL效应分解为单细胞效应,并描绘它们对染色质可及性和基因表达的影响。我们期望scooby有助于在单个细胞的分辨率下揭示基因调控的复杂性。