Institute of Computational Biology, Department of Computational Health, Helmholtz Munich, Munich, Germany.
School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
Nat Methods. 2024 Jul;21(7):1196-1205. doi: 10.1038/s41592-024-02303-9. Epub 2024 Jun 13.
Single-cell RNA sequencing allows us to model cellular state dynamics and fate decisions using expression similarity or RNA velocity to reconstruct state-change trajectories; however, trajectory inference does not incorporate valuable time point information or utilize additional modalities, whereas methods that address these different data views cannot be combined or do not scale. Here we present CellRank 2, a versatile and scalable framework to study cellular fate using multiview single-cell data of up to millions of cells in a unified fashion. CellRank 2 consistently recovers terminal states and fate probabilities across data modalities in human hematopoiesis and endodermal development. Our framework also allows combining transitions within and across experimental time points, a feature we use to recover genes promoting medullary thymic epithelial cell formation during pharyngeal endoderm development. Moreover, we enable estimating cell-specific transcription and degradation rates from metabolic-labeling data, which we apply to an intestinal organoid system to delineate differentiation trajectories and pinpoint regulatory strategies.
单细胞 RNA 测序允许我们使用表达相似性或 RNA 速度来模拟细胞状态动态和命运决策,以重建状态变化轨迹;然而,轨迹推断没有结合有价值的时间点信息或利用其他模态,而解决这些不同数据视图的方法不能组合或不具有可扩展性。在这里,我们提出了 CellRank 2,这是一个通用且可扩展的框架,用于使用多达数百万个细胞的多视图单细胞数据以统一的方式研究细胞命运。CellRank 2 一致地恢复了人类造血和内胚层发育中不同数据模态的终态和命运概率。我们的框架还允许在实验时间点内和跨实验时间点组合转变,我们使用此功能来恢复在咽内胚层发育过程中促进骨髓胸腺上皮细胞形成的基因。此外,我们能够从代谢标记数据估计细胞特异性转录和降解率,我们将其应用于肠道类器官系统以描绘分化轨迹并确定调控策略。