Ritz David, Deng Yijie, Schultz Daniel
Department of Microbiology & Immunology, Geisel School of Medicine, Hanover, NH 03755, USA.
Thayer School of Engineering - Dartmouth College, Hanover, NH 03755, USA.
bioRxiv. 2024 Sep 22:2024.09.20.614194. doi: 10.1101/2024.09.20.614194.
Typical antibiotic susceptibility testing (AST) of microbial samples is performed in homogeneous cultures in steady environments, which does not account for the highly heterogeneous and dynamic nature of antibiotic responses. The most common mutation found in lineages evolved in the human lung, a loss of function of repressor MexZ, increases basal levels of multidrug efflux MexXY, but does not increase resistance by traditional MIC measures. Here, we use single cell microfluidics to show that response to aminoglycosides is highly heterogeneous, with only a subpopulation of cells surviving exposure. mutations then bypass the lengthy process of MexXY activation, increasing survival to sudden drug exposures and conferring a fitness advantage in fluctuating environments. We propose a simple "Response Dynamics" assay to quantify the speed of population-level recovery to drug exposures. This assay can be used alongside MIC for resistance profiling to better predict clinical outcomes.
微生物样本的典型抗生素敏感性测试(AST)是在稳定环境中的均匀培养物中进行的,这无法体现抗生素反应的高度异质性和动态特性。在人肺部进化的谱系中发现的最常见突变是阻遏物MexZ功能丧失,这会增加多药外排泵MexXY的基础水平,但通过传统的最低抑菌浓度(MIC)测量方法并不会增加耐药性。在这里,我们使用单细胞微流控技术表明,对氨基糖苷类药物的反应高度异质,只有亚群细胞在接触药物后存活下来。然后,突变绕过了MexXY激活的漫长过程,提高了对突然药物暴露的存活率,并在波动环境中赋予了适应性优势。我们提出了一种简单的“反应动力学”测定法,以量化群体水平对药物暴露的恢复速度。该测定法可与MIC一起用于耐药性分析,以更好地预测临床结果。