National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka 560065, India.
Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Nucleic Acids Res. 2020 May 7;48(8):4100-4114. doi: 10.1093/nar/gkaa162.
The evolution of regulatory networks in Bacteria has largely been explained at macroevolutionary scales through lateral gene transfer and gene duplication. Transcription factors (TF) have been found to be less conserved across species than their target genes (TG). This would be expected if TFs accumulate mutations faster than TGs. This hypothesis is supported by several lab evolution studies which found TFs, especially global regulators, to be frequently mutated. Despite these studies, the contribution of point mutations in TFs to the evolution of regulatory network is poorly understood. We tested if TFs show greater genetic variation than their TGs using whole-genome sequencing data from a large collection of Escherichia coli isolates. TFs were less diverse than their TGs across natural isolates, with TFs of large regulons being more conserved. In contrast, TFs showed higher mutation frequency in adaptive laboratory evolution experiments. However, over long-term laboratory evolution spanning 60 000 generations, mutation frequency in TFs gradually declined after a rapid initial burst. Extrapolating the dynamics of genetic variation from long-term laboratory evolution to natural populations, we propose that point mutations, conferring large-scale gene expression changes, may drive the early stages of adaptation but gene regulation is subjected to stronger purifying selection post adaptation.
细菌中调控网络的进化在很大程度上可以从宏观进化尺度上通过横向基因转移和基因复制来解释。与靶基因 (TG) 相比,转录因子 (TF) 在物种间的保守性较低。如果 TF 比 TG 积累更多的突变,那么这是可以预期的。这一假设得到了几项实验室进化研究的支持,这些研究发现 TF,特别是全局调节剂,经常发生突变。尽管进行了这些研究,但 TF 中的点突变对调控网络进化的贡献仍知之甚少。我们使用从大量大肠杆菌分离株中获得的全基因组测序数据,测试了 TF 是否比其 TG 具有更大的遗传变异。TF 比其自然分离株的多样性要低,大调控因子的 TF 更为保守。相比之下,TF 在适应性实验室进化实验中表现出更高的突变频率。然而,在跨越 60000 代的长期实验室进化中,TF 的突变频率在快速初始爆发后逐渐下降。从长期实验室进化到自然种群中推断遗传变异的动态,我们提出,导致大规模基因表达变化的点突变可能会驱动适应的早期阶段,但基因调控在适应后受到更强的纯化选择。