Zhang Zhenyu, Uribe Isabel, Davis Kaitlin A, McPherson Robert Lyle, Larson Gloria P, Badiee Mohsen, Tran Vy, Ledwith Mitchell P, Feltman Elizabeth, Yú Shuǐqìng, Caì Yíngyún, Chang Che-Yuan, Yang Xingyi, Ma Zhuo, Chang Paul, Kuhn Jens H, Leung Anthony K L, Mehle Andrew
Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI.
Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
bioRxiv. 2024 Sep 19:2024.09.19.613696. doi: 10.1101/2024.09.19.613696.
ADP-ribosylation is a highly dynamic and fully reversible post-translational modification performed by poly(ADP-ribose) polymerases (PARPs) that modulates protein function, abundance, localization and turnover. Here we show that influenza A virus infection causes a rapid and dramatic upregulation of global ADP-ribosylation that inhibits viral replication. Mass spectrometry defined for the first time the global ADP-ribosylome during infection, creating an infection-specific profile with almost 4,300 modification sites on ~1,080 host proteins, as well as over 100 modification sites on viral proteins. Our data indicate that the global increase likely reflects a change in the form of ADP-ribosylation rather than modification of new targets. Functional assays demonstrated that modification of the viral replication machinery antagonizes its activity and further revealed that the anti-viral activity of PARPs and ADP-ribosylation is counteracted by the influenza A virus protein NS1, assigning a new activity to the primary viral antagonist of innate immunity. We identified PARP1 as the enzyme producing the majority of poly(ADP-ribose) present during infection. Influenza A virus replicated faster in cells lacking PARP1, linking PARP1 and ADP-ribosylation to the anti-viral phenotype. Together, these data establish ADP-ribosylation as an anti-viral innate immune-like response to viral infection antagonized by a previously unknown activity of NS1.
ADP核糖基化是一种由聚(ADP-核糖)聚合酶(PARP)进行的高度动态且完全可逆的翻译后修饰,它可调节蛋白质的功能、丰度、定位和周转。在此,我们表明甲型流感病毒感染会导致全局ADP核糖基化迅速且显著上调,从而抑制病毒复制。质谱首次定义了感染期间的全局ADP核糖基组,生成了一种感染特异性图谱,在约1080种宿主蛋白上有近4300个修饰位点,以及在病毒蛋白上有超过100个修饰位点。我们的数据表明,全局增加可能反映了ADP核糖基化形式的变化,而非新靶点的修饰。功能分析表明,病毒复制机制的修饰会拮抗其活性,并进一步揭示PARP和ADP核糖基化的抗病毒活性被甲型流感病毒蛋白NS1抵消,这为先天免疫的主要病毒拮抗剂赋予了一种新活性。我们确定PARP1是感染期间产生大部分聚(ADP-核糖)的酶。甲型流感病毒在缺乏PARP1的细胞中复制得更快,将PARP1和ADP核糖基化与抗病毒表型联系起来。总之,这些数据确立了ADP核糖基化作为一种针对病毒感染的抗病毒先天免疫样反应,而NS1的一种此前未知的活性可拮抗这种反应。