The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Theranostics. 2024 Sep 9;14(15):5965-5981. doi: 10.7150/thno.99820. eCollection 2024.
The brain-computer interface (BCI) is core tasks in comprehensively understanding the brain, and is one of the most significant challenges in neuroscience. The development of novel non-invasive neuromodulation technique will drive major innovations and breakthroughs in the field of BCI. We develop a new noninvasive closed-loop acoustic brain-computer interface (aBCI) for decoding the seizure onset based on the electroencephalography and triggering ultrasound stimulation of the vagus nerve to terminate seizures. Firstly, we create the aBCI system and decode the onset of seizure via a multi-level threshold model based on the analysis of wireless-collected electroencephalogram (EEG) signals recorded from above the hippocampus. Then, the different acoustic parameters induced acoustic radiation force were used to stimulate the vagus nerve in a rat model of epilepsy-induced by pentylenetetrazole. Finally, the results of epileptic EEG signal triggering ultrasound stimulation of the vagus nerve to control seizures. In addition, the mechanism of aBCI control seizures were investigated by real-time quantitative polymerase chain reaction (RT-qPCR). In a rat model of epilepsy, the aBCI system selectively actives mechanosensitive neurons in the nodose ganglion while suppressing neuronal excitability in the hippocampus and amygdala, and stops seizures rapidly upon ultrasound stimulation of the vagus nerve. Physical transection or chemical blockade of the vagus nerve pathway abolish the antiepileptic effects of aBCI. In addition, aBCI shows significant antiepileptic effects compared to conventional vagus nerve electrical stimulation in an acute experiment. Closed-loop aBCI provides a novel, safe and effective tool for on-demand stimulation to treat abnormal neuronal discharges, opening the door to next generation non-invasive BCI.
脑机接口 (BCI) 是全面理解大脑的核心任务,也是神经科学领域最具挑战性的任务之一。新型非侵入性神经调节技术的发展将推动 BCI 领域的重大创新和突破。
我们开发了一种新的非侵入性闭环声脑-机接口 (aBCI),用于解码基于脑电图的癫痫发作,并触发迷走神经超声刺激以终止癫痫发作。首先,我们创建了 aBCI 系统,并通过基于无线采集的海马上方记录的脑电图 (EEG) 信号分析的多级阈值模型来解码发作的开始。然后,使用不同的声参数诱导声辐射力来刺激戊四氮诱导的癫痫大鼠模型中的迷走神经。最后,结果表明,癫痫 EEG 信号触发超声刺激迷走神经可以控制癫痫发作。此外,通过实时定量聚合酶链反应 (RT-qPCR) 研究了 aBCI 控制癫痫发作的机制。
在癫痫大鼠模型中,aBCI 系统选择性地激活神经节中的机械敏感神经元,同时抑制海马和杏仁核中的神经元兴奋性,并在超声刺激迷走神经时迅速停止癫痫发作。迷走神经通路的物理横断或化学阻断可消除 aBCI 的抗癫痫作用。此外,与急性实验中的常规迷走神经电刺激相比,aBCI 显示出显著的抗癫痫作用。
闭环 aBCI 为按需刺激提供了一种新颖、安全、有效的工具,可用于治疗异常神经元放电,为下一代非侵入性 BCI 开辟了道路。
BMC Neurosci. 2013-8-9
Biomed Phys Eng Express. 2024-11-25
Front Neurosci. 2024-11-22
Front Aging Neurosci. 2023-7-6
Proc Natl Acad Sci U S A. 2023-5-2
Adv Sci (Weinh). 2023-5