Yang Siyi, Qiao Xiujuan, Ma Junlong, Yang Zhihao, Luo Xiliang, Du Zhanhong
The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Biosensors (Basel). 2025 Jul 2;15(7):424. doi: 10.3390/bios15070424.
The rapid advancement of flexible sensor technology has profoundly transformed neural interface research, enabling multimodal information acquisition, real-time neurochemical and electrophysiological signal monitoring, and adaptive closed-loop regulation. This review systematically summarizes recent developments in flexible materials and microstructural designs optimized for enhanced biocompatibility, mechanical compliance, and sensing performance. We highlight the progress in integrated sensing systems capable of simultaneously capturing electrophysiological, mechanical, and neurochemical signals. The integration of carbon-based nanomaterials, metallic composites, and conductive polymers with innovative structural engineering is analyzed, emphasizing their potential in overcoming traditional rigid interface limitations. Furthermore, strategies for multimodal signal fusion, including electrochemical, optical, and mechanical co-sensing, are discussed in depth. Finally, we explore future perspectives involving the convergence of machine learning, miniaturized power systems, and intelligent responsive materials, aiming at the translation of flexible neural interfaces from laboratory research to practical clinical interventions and therapeutic applications.
柔性传感器技术的迅速发展深刻改变了神经接口研究,实现了多模态信息采集、实时神经化学和电生理信号监测以及自适应闭环调节。本综述系统总结了为增强生物相容性、机械顺应性和传感性能而优化的柔性材料和微观结构设计的最新进展。我们重点介绍了能够同时捕获电生理、机械和神经化学信号的集成传感系统的进展。分析了碳基纳米材料、金属复合材料和导电聚合物与创新结构工程的整合,强调了它们在克服传统刚性接口局限性方面的潜力。此外,还深入讨论了多模态信号融合策略,包括电化学、光学和机械共传感。最后,我们探讨了涉及机器学习、小型化电源系统和智能响应材料融合的未来前景,旨在将柔性神经接口从实验室研究转化为实际临床干预和治疗应用。