Suppr超能文献

电荷转移在光合捕光I复合体光谱调谐中的重要作用。

Prominent Role of Charge Transfer in the Spectral Tuning of Photosynthetic Light-Harvesting I Complex.

作者信息

Fujimoto Kazuhiro J, Tsuji Rio, Wang-Otomo Zheng-Yu, Yanai Takeshi

机构信息

Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan.

Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan.

出版信息

ACS Phys Chem Au. 2024 Aug 5;4(5):499-509. doi: 10.1021/acsphyschemau.4c00022. eCollection 2024 Sep 25.

Abstract

Purple bacteria possess two ring-shaped protein complexes, light-harvesting 1 (LH1) and 2 (LH2), both of which function as antennas for solar energy utilization for photosynthesis but exhibit distinct absorption properties. The two antennas have differing amounts of bacteriochlorophyll (BChl) ; however, their significance in spectral tuning remains elusive. Here, we report a high-precision evaluation of the physicochemical factors contributing to the variation in absorption maxima between LH1 and LH2, namely, BChl structural distortion, protein electrostatic interaction, excitonic coupling, and charge transfer (CT) effects, as derived from detailed spectral calculations using an extended version of the exciton model, in the model purple bacterium . Spectral analysis confirmed that the electronic structure of the excited state in LH1 extended to the BChl 16-mer. Further analysis revealed that the LH1-specific redshift (∼61% in energy) is predominantly accounted for by the CT effect resulting from the closer inter-BChl distance in LH1 than in LH2. Our analysis explains how LH1 and LH2, both with chemically identical BChl chromophores, use distinct physicochemical effects to achieve a progressive redshift from LH2 to LH1, ensuring efficient energy transfer to the reaction center special pair.

摘要

紫色细菌拥有两种环状蛋白质复合物,即光捕获1(LH1)和光捕获2(LH2),它们均作为光合作用中太阳能利用的天线发挥作用,但具有不同的吸收特性。这两种天线含有不同数量的细菌叶绿素(BChl);然而,它们在光谱调谐中的重要性仍不明确。在此,我们报告了对导致LH1和LH2之间最大吸收波长变化的物理化学因素的高精度评估,即BChl结构畸变、蛋白质静电相互作用、激子耦合和电荷转移(CT)效应,这些效应源自使用激子模型扩展版本对模型紫色细菌进行的详细光谱计算。光谱分析证实,LH1中激发态的电子结构延伸至BChl 16聚体。进一步分析表明,LH1特有的红移(约占能量的61%)主要是由LH1中BChl间距离比LH2中更近所导致的CT效应引起的。我们的分析解释了具有化学相同BChl发色团的LH1和LH2如何利用不同的物理化学效应实现从LH2到LH1的渐进红移,确保有效地将能量转移到反应中心特殊对。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d87/11428290/de1d88c41138/pg4c00022_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验