Suppr超能文献

基于生物信息学和机器学习的 COPD 相关生物标志物筛选及中医药预测。

Screening COPD-Related Biomarkers and Traditional Chinese Medicine Prediction Based on Bioinformatics and Machine Learning.

机构信息

Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China.

Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, People's Republic of China.

出版信息

Int J Chron Obstruct Pulmon Dis. 2024 Sep 24;19:2073-2095. doi: 10.2147/COPD.S476808. eCollection 2024.

Abstract

PURPOSE

To employ bioinformatics and machine learning to predict the characteristics of immune cells and genes associated with the inflammatory response and ferroptosis in chronic obstructive pulmonary disease (COPD) patients and to aid in the development of targeted traditional Chinese medicine (TCM). Mendelian randomization analysis elucidates the causal relationships among immune cells, genes, and COPD, offering novel insights for the early diagnosis, prevention, and treatment of COPD. This approach also provides a fresh perspective on the use of traditional Chinese medicine for treating COPD.

METHODS

R software was used to extract COPD-related data from the Gene Expression Omnibus (GEO) database, differentially expressed genes were identified for enrichment analysis, and WGCNA was used to pinpoint genes within relevant modules associated with COPD. This analysis included determining genes linked to the inflammatory response in COPD patients and analyzing their correlation with ferroptosis. Further steps involved filtering core genes, constructing TF-miRNA‒mRNA network diagrams, and employing three types of machine learning to predict the core miRNAs, key immune cells, and characteristic genes of COPD patients. This process also delves into their correlations, single-gene GSEA, and diagnostic model predictions. Reverse inference complemented by molecular docking was used to predict compounds and traditional Chinese medicines for treating COPD; Mendelian randomization was applied to explore the causal relationships among immune cells, genes, and COPD.

RESULTS

We identified 2443 differential genes associated with COPD through the GEO database, along with 8435 genes relevant to WGCNA and 1226 inflammation-related genes. A total of 141 genes related to the inflammatory response in COPD patients were identified, and 37 core genes related to ferroptosis were selected for further enrichment analysis and analysis. The core miRNAs predicted for COPD include hsa-miR-543, hsa-miR-181c, and hsa-miR-200a, among others. The key immune cells identified were plasma cells, activated memory CD4 T cells, gamma delta T cells, activated NK cells, M2 macrophages, and eosinophils. Characteristic genes included EGF, PLG, PTPN22, and NR4A1. A total of 78 compounds and 437 traditional Chinese medicines were predicted. Mendelian randomization analysis revealed a causal relationship between 36 types of immune cells and COPD, whereas no causal relationship was found between the core genes and COPD.

CONCLUSION

A definitive causal relationship exists between immune cells and COPD, while the prediction of core miRNAs, key immune cells, characteristic genes, and targeted traditional Chinese medicines offers novel insights for the early diagnosis, prevention, and treatment of COPD.

摘要

目的

运用生物信息学和机器学习预测与慢性阻塞性肺疾病(COPD)患者炎症反应和铁死亡相关的免疫细胞和基因特征,并辅助开发靶向中药。孟德尔随机分析阐明了免疫细胞、基因与 COPD 之间的因果关系,为 COPD 的早期诊断、预防和治疗提供了新的视角。这种方法还为使用中药治疗 COPD 提供了新的思路。

方法

使用 R 软件从基因表达综合数据库(GEO)中提取 COPD 相关数据,进行差异表达基因富集分析,利用 WGCNA 鉴定与 COPD 相关模块中的基因。该分析包括确定 COPD 患者炎症反应相关基因,并分析其与铁死亡的相关性。进一步包括筛选核心基因、构建 TF-miRNA-mRNA 网络图,并运用三种机器学习方法预测 COPD 患者的核心 miRNA、关键免疫细胞和特征基因。还深入探讨了它们的相关性、单基因 GSEA 和诊断模型预测。反向推理辅以分子对接预测治疗 COPD 的化合物和中药;孟德尔随机分析用于探索免疫细胞、基因与 COPD 之间的因果关系。

结果

通过 GEO 数据库,我们确定了 2443 个与 COPD 相关的差异基因,同时确定了 8435 个与 WGCNA 相关的基因和 1226 个与炎症相关的基因。共鉴定出 141 个与 COPD 患者炎症反应相关的基因,筛选出 37 个与铁死亡相关的核心基因进行进一步富集分析和分析。预测的与 COPD 相关的核心 miRNA 包括 hsa-miR-543、hsa-miR-181c 和 hsa-miR-200a 等。鉴定的关键免疫细胞包括浆细胞、活化记忆 CD4 T 细胞、γδ T 细胞、活化 NK 细胞、M2 巨噬细胞和嗜酸性粒细胞。特征基因包括 EGF、PLG、PTPN22 和 NR4A1。共预测了 78 种化合物和 437 种中药。孟德尔随机分析显示 36 种免疫细胞与 COPD 之间存在因果关系,而核心基因与 COPD 之间不存在因果关系。

结论

免疫细胞与 COPD 之间存在明确的因果关系,而核心 miRNA、关键免疫细胞、特征基因和靶向中药的预测为 COPD 的早期诊断、预防和治疗提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/265f/11438478/adf254f3d83f/COPD-19-2073-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验