Bhattarai Mohan K, Shweta Shweta, Ashie Moses D, Guddehalli Chandrappa Shivaraju, Ale Magar Birendra, Bastakoti Bishnu P, Córdova Figueroa Ubaldo M, Katiyar Ram S, Weiner Brad R, Morell Gerardo
Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00931, United States.
Department of Chemistry, North Carolina A&T State University, 1601 East Market Street, Greensboro, North Carolina 27411, United States.
ACS Omega. 2024 Sep 13;9(38):39863-39872. doi: 10.1021/acsomega.4c05437. eCollection 2024 Sep 24.
Lithium-ion batteries (LIBs) serve as the backbone of modern technologies with ongoing efforts to enhance their performance and sustainability driving the exploration of new electrode materials. This study introduces a new type of alloy-conversion-based gallium ferrite (GFO: GaFeO) as a potential anode material for Li-ion battery applications. The GFO was synthesized by a one-step mechanochemistry-assisted solid-state method. The powder X-ray diffraction analysis confirms the presence of an orthorhombic phase with the 2 space group. The photoelectron spectroscopy studies reveal the presence of Ga and Fe oxidation states of gallium and iron atoms in the GFO structure. The GFO was evaluated as an anode material for Li-ion battery applications, displaying a high discharge capacity of ∼887 mA h g and retaining a stable capacity of ∼200 mA h g over 450 cycles, with a Coulombic efficiency of 99.6 % at a current density of 100 mA g. Cyclic voltammetry studies confirm an alloy-conversion-based reaction mechanism in the GFO anode. Furthermore, density functional theory studies reveal the reaction mechanism during cycling and Li-ion diffusion pathways in the GFO anode. These results strongly suggest that the GFO could be an alternative anode material in LIBs.
锂离子电池(LIBs)是现代技术的核心,人们不断努力提高其性能和可持续性,推动了对新型电极材料的探索。本研究介绍了一种新型的基于合金转换的铁酸镓(GFO:GaFeO)作为锂离子电池应用的潜在负极材料。GFO通过一步机械化学辅助固态法合成。粉末X射线衍射分析证实存在具有2 空间群的正交相。光电子能谱研究揭示了GFO结构中镓和铁原子的Ga和Fe氧化态的存在。GFO被评估为锂离子电池应用的负极材料,在100 mA g的电流密度下,显示出约887 mA h g的高放电容量,并在450次循环中保持约200 mA h g的稳定容量,库仑效率为99.6%。循环伏安法研究证实了GFO负极中基于合金转换的反应机制。此外,密度泛函理论研究揭示了GFO负极在循环过程中的反应机制和锂离子扩散途径。这些结果强烈表明,GFO可能是锂离子电池中的一种替代负极材料。