Suppr超能文献

利用遗传证据剖析肠道微生物组、免疫特征和息肉之间的因果关系。

Dissecting the causal links between gut microbiome, immune traits and polyp using genetic evidence.

机构信息

Department of Gastroenterology, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Changzhou, China.

The First College of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China.

出版信息

Front Immunol. 2024 Sep 13;15:1431990. doi: 10.3389/fimmu.2024.1431990. eCollection 2024.

Abstract

BACKGROUND

Previous research has demonstrated an association between gut microbiota and immune status with the development of several diseases. However, whether these factors contribute to polyps remains unclear. This study aims to use Mendelian randomization (MR) to investigate the causal relationship between gut microbiota and 4 types of polyps (nasal, gallbladder, colon, and gastric polyps), as well as to analyze the mediating role of immune traits.

METHODS

This study utilized large-scale GWAS meta-analyses of gut microbiota (MiBioGen Consortium), 731 immune traits, and 4 types of polyps (one from the FinnGen Consortium and three from the NBDC Human Database). Univariate MR with the inverse variance weighted (IVW) estimation method was employed as the primary analytical approach. A two-step MR analysis was performed to identify potential mediating immune traits. Additionally, multivariable MR approach based on Bayesian model averaging (MR-BMA) was employed to further prioritize gut microbiota and immune traits associated with polyp development.

RESULTS

Based on IVW method in univariate MR analysis, we identified 39 gut microbial taxa and 135 immune traits significantly causally associated with at least one type of polyp. For nasal polyps, 13 microbial taxa and 61 immune traits were causally associated. After false discovery rate (FDR) correction, CD3 on Central Memory CD8 T cells and CD3 on CD4 regulatory T cells remained significant. MR-BMA identified 4 gut microbial taxa and 4 immune traits as high priority. For gallbladder polyps, 9 microbial taxa and 30 immune traits were causally associated. MR-BMA identified 8 microbial taxa and 6 immune traits as higher importance. For colon polyps, 6 microbial taxa and 21 immune traits were causally associated. MR-BMA identified 4 microbial taxa and 3 immune traits as higher importance. For gastric polyps, 12 microbial taxa and 33 immune traits were causally associated. remained significant after FDR correction, and MR-BMA identified 7 gut microbial taxa and 6 immune traits as high priority. We identified 16 causal pathways with mediator directions consistent with the direction of gut microbiome-polyp association. Of these, 6 pathways were associated with the mechanism of nasal polyps, 1 with gallbladder polyps, 2 with colon polyps, and 7 with gastric polyps.

CONCLUSIONS

Our findings shed light on the causal relationships between gut microbiota, immune traits, and polyp development, underscoring the crucial roles of gut microbiota and immune status in polypogenesis. Furthermore, these findings suggest potential applications in polyp prevention, early screening, and the development of effective strategies to reduce polyp risk.

摘要

背景

先前的研究表明,肠道微生物群与免疫状态与多种疾病的发展有关。然而,这些因素是否与息肉的形成有关尚不清楚。本研究旨在使用孟德尔随机化(MR)方法来研究肠道微生物群与 4 种息肉(鼻息肉、胆囊息肉、结肠息肉和胃息肉)之间的因果关系,并分析免疫特征的中介作用。

方法

本研究利用大规模的肠道微生物组(MiBioGen 联盟)、731 种免疫特征和 4 种息肉(一个来自 FinnGen 联盟,三个来自 NBDC 人类数据库)的全基因组关联研究荟萃分析。采用单变量 MR 分析,采用逆方差加权(IVW)估计方法。采用两步 MR 分析来确定潜在的中介免疫特征。此外,基于贝叶斯模型平均(MR-BMA)的多变量 MR 方法用于进一步确定与息肉形成相关的肠道微生物群和免疫特征的优先级。

结果

基于单变量 MR 分析中的 IVW 方法,我们确定了 39 种肠道微生物群和 135 种免疫特征与至少一种类型的息肉有因果关系。对于鼻息肉,有 13 种微生物群和 61 种免疫特征与息肉的形成有因果关系。经错误发现率(FDR)校正后,中央记忆 CD8 T 细胞上的 CD3 和 CD4 调节性 T 细胞上的 CD3 仍然显著。MR-BMA 确定了 4 种肠道微生物群和 4 种免疫特征为高优先级。对于胆囊息肉,有 9 种微生物群和 30 种免疫特征与息肉的形成有因果关系。MR-BMA 确定了 8 种肠道微生物群和 6 种免疫特征为更高优先级。对于结肠息肉,有 6 种微生物群和 21 种免疫特征与息肉的形成有因果关系。MR-BMA 确定了 4 种肠道微生物群和 3 种免疫特征为更高优先级。对于胃息肉,有 12 种微生物群和 33 种免疫特征与息肉的形成有因果关系。经 FDR 校正后,仍有 5 种与息肉的形成有因果关系,MR-BMA 确定了 7 种肠道微生物群和 6 种免疫特征为高优先级。我们确定了 16 条具有与肠道微生物群-息肉关联方向一致的中介作用方向的因果途径。其中,6 条途径与鼻息肉的发病机制有关,1 条与胆囊息肉有关,2 条与结肠息肉有关,7 条与胃息肉有关。

结论

本研究结果揭示了肠道微生物群、免疫特征与息肉发生之间的因果关系,强调了肠道微生物群和免疫状态在息肉发生中的重要作用。此外,这些发现为息肉的预防、早期筛查以及开发降低息肉风险的有效策略提供了潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e418/11427361/a41ce443ad4e/fimmu-15-1431990-g001.jpg

相似文献

1
Dissecting the causal links between gut microbiome, immune traits and polyp using genetic evidence.
Front Immunol. 2024 Sep 13;15:1431990. doi: 10.3389/fimmu.2024.1431990. eCollection 2024.
2
Gut microbiota and intervertebral disc degeneration: a bidirectional two-sample Mendelian randomization study.
J Orthop Surg Res. 2023 Aug 14;18(1):601. doi: 10.1186/s13018-023-04081-0.
4
Genetic liability of gut microbiota for idiopathic pulmonary fibrosis and lung function: a two-sample Mendelian randomization study.
Front Cell Infect Microbiol. 2024 May 22;14:1348685. doi: 10.3389/fcimb.2024.1348685. eCollection 2024.
5
6
Causal effects between gut microbiota and endometriosis: a two-sample Mendelian randomisation study.
J Obstet Gynaecol. 2024 Dec;44(1):2362415. doi: 10.1080/01443615.2024.2362415. Epub 2024 Jun 17.
7
Causal relationship between gut microbiota and insulin-like growth factor 1: a bidirectional two-sample Mendelian randomization study.
Front Cell Infect Microbiol. 2024 Sep 24;14:1406132. doi: 10.3389/fcimb.2024.1406132. eCollection 2024.
9
Gut microbiota and autism spectrum disorders: a bidirectional Mendelian randomization study.
Front Cell Infect Microbiol. 2023 Dec 14;13:1267721. doi: 10.3389/fcimb.2023.1267721. eCollection 2023.
10
Causal role of gut microbiota in intracranial aneurysm: evidence from a Mendelian randomization study.
Eur Rev Med Pharmacol Sci. 2024 Mar;28(5):1947-1958. doi: 10.26355/eurrev_202403_35609.

引用本文的文献

1
Gut Microbiota and Gastrointestinal Polyps: Unveiling the Causal Connection.
Turk J Gastroenterol. 2025 Apr 2;36(5):266-268. doi: 10.5152/tjg.2025.0201254.

本文引用的文献

1
Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia.
J Psychiatr Res. 2024 Mar;171:152-160. doi: 10.1016/j.jpsychires.2024.01.036. Epub 2024 Jan 23.
3
Convergent application of traditional Chinese medicine and gut microbiota in ameliorate of cirrhosis: a data mining and Mendelian randomization study.
Front Cell Infect Microbiol. 2023 Nov 6;13:1273031. doi: 10.3389/fcimb.2023.1273031. eCollection 2023.
4
Alteration of indicator gut microbiota in patients with chronic sinusitis.
Immun Inflamm Dis. 2023 Sep;11(9):e996. doi: 10.1002/iid3.996.
5
New putative periodontopathogens and periodontal health-associated species: A systematic review and meta-analysis.
J Periodontal Res. 2023 Oct;58(5):893-906. doi: 10.1111/jre.13173. Epub 2023 Aug 10.
7
Fecal microbiota transplantation: Emerging applications in autoimmune diseases.
J Autoimmun. 2023 Dec;141:103038. doi: 10.1016/j.jaut.2023.103038. Epub 2023 Apr 26.
9
Gut microbiota signatures in tissues of the colorectal polyp and normal colorectal mucosa, and faeces.
Front Cell Infect Microbiol. 2023 Jan 10;12:1054808. doi: 10.3389/fcimb.2022.1054808. eCollection 2022.
10
FinnGen provides genetic insights from a well-phenotyped isolated population.
Nature. 2023 Jan;613(7944):508-518. doi: 10.1038/s41586-022-05473-8. Epub 2023 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验