Suppr超能文献

用于SILMAS的图像后处理:轴向扫描结构光照明显微镜

Image post-processing for SILMAS: structured illumination light sheet microscopy with axial sweeping.

作者信息

Frantz David, Wright Courtney J, Schaser Allison J, Kirik Deniz, Kristensson Elias, Berrocal Edouard

机构信息

Division of Combustion Physics, Department of Physics, Lund University, Lund, Sweden.

Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden.

出版信息

Biomed Opt Express. 2024 Jul 30;15(8):4943-4962. doi: 10.1364/BOE.531210. eCollection 2024 Aug 1.

Abstract

In this article, we propose a post-processing scheme for the novel volumetric microscopy technique SILMAS. We demonstrate this scheme on data from an alpha-synuclein transgenic mouse brain. By combining structured illumination and axial sweeping, a SILMAS measurement provides a prerequisite for quantitative data extraction through improved contrast and optical sectioning. However, due to the technique's efficient removal ofb multiple scattered light, image artifacts such as illumination inhomogeneity, shadowing stripes, and signal attenuation, are highlighted in the recorded volumes. To suppress these artifacts, we rely on the strengths of the imaging method. The SILMAS data, together with the Beer-Lambert law, allow for an approximation of real light extinction, which can be used to compensate for light attenuation in a near-quantitative way. Shadowing stripes can be suppressed efficiently using a computational strategy thanks to the large numerical aperture of an axially swept light sheet. Here, we build upon prior research that employed wavelet-Fourier filtering by incorporating an extra bandpass step. This allows us to filter high-contrast light sheet microscopy data without introducing new artifacts and with minimal distortion of the data. The combined technique is suitable for imaging cleared tissue samples of up to a centimeter scale with an isotropic resolution of a few microns. The combination of a thin and uniform light sheet, scattered light suppression, light attenuation compensation, and shadowing suppression produces volumetric data that is seamless and highly uniform.

摘要

在本文中,我们为新型体视显微镜技术SILMAS提出了一种后处理方案。我们在来自α-突触核蛋白转基因小鼠大脑的数据上演示了该方案。通过结合结构光照和轴向扫描,SILMAS测量通过改善对比度和光学切片为定量数据提取提供了前提条件。然而,由于该技术有效地去除了多次散射光,记录的体积中突出显示了诸如照明不均匀、阴影条纹和信号衰减等图像伪影。为了抑制这些伪影,我们依赖于成像方法的优势。SILMAS数据与比尔-朗伯定律一起,可以近似真实的光消光,可用于以近定量的方式补偿光衰减。由于轴向扫描光片的大数值孔径,使用计算策略可以有效地抑制阴影条纹。在这里,我们在先前采用小波-傅里叶滤波的研究基础上,加入了一个额外的带通步骤。这使我们能够过滤高对比度光片显微镜数据,而不会引入新的伪影,并且数据失真最小。该组合技术适用于对尺寸达厘米级的透明组织样本进行成像,各向同性分辨率可达几微米。薄而均匀的光片、散射光抑制、光衰减补偿和阴影抑制的组合产生了无缝且高度均匀的体数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6768/11427213/8a901355efea/boe-15-8-4943-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验