Sage Daniel, Donati Lauréne, Soulez Ferréol, Fortun Denis, Schmit Guillaume, Seitz Arne, Guiet Romain, Vonesch Cédric, Unser Michael
Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Center for Biomedical Imaging-Signal Processing Core (CIBM-SP), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Methods. 2017 Feb 15;115:28-41. doi: 10.1016/j.ymeth.2016.12.015. Epub 2017 Jan 3.
Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov-Miller, Richardson-Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.
由于光的衍射极限,荧光显微镜下的图像本质上是模糊的。反卷积显微镜的目的是通过数字方式补偿这种退化。反卷积被广泛用于恢复三维生物样本的精细细节。不幸的是,使用反卷积工具并非易事。其中,终端用户必须选择合适的算法、校准和参数设置,同时可能面临艰巨的计算任务。为了使反卷积更易于使用,我们开发了一个用于反卷积显微镜的实用平台,称为反卷积实验室(DeconvolutionLab)。反卷积实验室免费分发,它包含用于三维显微镜反卷积的标准算法,并通过一个面向用户的界面来驱动这些算法。在本文中,我们利用反卷积实验室2的发布,对该软件包及其内置的反卷积算法进行全面描述。我们研究了反卷积显微镜中使用的几种标准算法,特别是:正则化逆滤波器、蒂霍诺夫正则化、兰德韦伯算法、蒂霍诺夫 - 米勒算法、理查森 - 卢西算法和快速迭代收缩阈值算法。我们使用模拟数据集和真实实验图像,在大型三维显微镜图像上评估这些方法。我们从图像质量、性能、可用性和计算要求等方面区分这些算法。我们结合最近组织的反卷积显微镜大挑战的结果,对反卷积的最新趋势进行了讨论,从而完成了我们的介绍。