Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158.
Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E782-E791. doi: 10.1073/pnas.1714966115. Epub 2018 Jan 8.
Point mutations in the amyloid-β (Aβ) coding region produce a combination of mutant and WT Aβ isoforms that yield unique clinicopathologies in familial Alzheimer's disease (fAD) and cerebral amyloid angiopathy (fCAA) patients. Here, we report a method to investigate the structural variability of amyloid deposits found in fAD, fCAA, and sporadic AD (sAD). Using this approach, we demonstrate that mutant Aβ determines WT Aβ conformation through prion template-directed misfolding. Using principal component analysis of multiple structure-sensitive fluorescent amyloid-binding dyes, we assessed the conformational variability of Aβ deposits in fAD, fCAA, and sAD patients. Comparing many deposits from a given patient with the overall population, we found that intrapatient variability is much lower than interpatient variability for both disease types. In a given brain, we observed one or two structurally distinct forms. When two forms coexist, they segregate between the parenchyma and cerebrovasculature, particularly in fAD patients. Compared with sAD samples, deposits from fAD patients show less intersubject variability, and little overlap exists between fAD and sAD deposits. Finally, we examined whether E22G (Arctic) or E22Q (Dutch) mutants direct the misfolding of WT Aβ, leading to fAD-like plaques in vivo. Intracerebrally injecting mutant Aβ40 fibrils into transgenic mice expressing only WT Aβ induced the deposition of plaques with many biochemical hallmarks of fAD. Thus, mutant Aβ40 prions induce a conformation of WT Aβ similar to that found in fAD deposits. These findings indicate that diverse AD phenotypes likely arise from one or more initial Aβ prion conformations, which kinetically dominate the spread of prions in the brain.
淀粉样蛋白-β (Aβ) 编码区的点突变产生突变型和 WT Aβ 同工型的组合,在家族性阿尔茨海默病 (fAD) 和脑淀粉样血管病 (fCAA) 患者中产生独特的临床病理。在这里,我们报告了一种研究 fAD、fCAA 和散发性 AD (sAD) 中发现的淀粉样沉积物结构变异性的方法。使用这种方法,我们证明突变 Aβ 通过朊病毒模板指导的错误折叠决定 WT Aβ 构象。使用多种结构敏感的荧光淀粉样蛋白结合染料的主成分分析,我们评估了 fAD、fCAA 和 sAD 患者中 Aβ 沉积物的构象变异性。将来自给定患者的许多沉积物与整个人群进行比较,我们发现两种疾病类型的患者内变异性都远低于患者间变异性。在给定的大脑中,我们观察到一种或两种结构上明显不同的形式。当两种形式共存时,它们会在实质和脑血管之间分离,特别是在 fAD 患者中。与 sAD 样本相比,fAD 患者的沉积物表现出较少的个体间变异性,并且 fAD 和 sAD 沉积物之间几乎没有重叠。最后,我们检查了 E22G (北极) 或 E22Q (荷兰) 突变体是否指导 WT Aβ 的错误折叠,导致体内出现类似于 fAD 的斑块。将突变型 Aβ40 纤维内注射到仅表达 WT Aβ 的转基因小鼠脑中,诱导沉积具有许多 fAD 生化特征的斑块。因此,突变型 Aβ40 朊病毒诱导 WT Aβ 的构象类似于在 fAD 沉积物中发现的构象。这些发现表明,不同的 AD 表型可能源自一种或多种初始 Aβ 朊病毒构象,这些构象在动力学上主导了朊病毒在大脑中的传播。