Li Guoqiu, Huang Zhibin, Tian Hongtian, Wu Huaiyu, Zheng Jing, Wang Mengyun, Mo Sijie, Chen Zhijie, Xu Jinfeng, Dong Fajin
Department of Ultrasound, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, Guangdong, China.
Department of Ultrasound, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China.
Biomed Opt Express. 2024 Jul 16;15(8):4689-4704. doi: 10.1364/BOE.530249. eCollection 2024 Aug 1.
Accurate prediction of breast cancer (BC) is essential for effective treatment planning and improving patient outcomes. This study proposes a novel deep learning (DL) approach using photoacoustic (PA) imaging to enhance BC prediction accuracy. We enrolled 334 patients with breast lesions from Shenzhen People's Hospital between January 2022 and January 2024. Our method employs a ResNet50-based model combined with attention mechanisms to analyze photoacoustic ultrasound (PA-US) images. Experiments demonstrated that the PAUS-ResAM50 model achieved superior performance, with an AUC of 0.917 (95% CI: 0.884 -0.951), sensitivity of 0.750, accuracy of 0.854, and specificity of 0.920 in the training set. In the testing set, the model maintained high performance with an AUC of 0.870 (95% CI: 0.778-0.962), sensitivity of 0.786, specificity of 0.872, and accuracy of 0.836. Our model significantly outperformed other models, including PAUS-ResNet50, BMUS-ResAM50, and BMUS-ResNet50, as validated by the DeLong test (p < 0.05 for all comparisons). Additionally, the PAUS-ResAM50 model improved radiologists' diagnostic specificity without reducing sensitivity, highlighting its potential for clinical application. In conclusion, the PAUS-ResAM50 model demonstrates substantial promise for optimizing BC diagnosis and aiding radiologists in early detection of BC.
准确预测乳腺癌对于有效的治疗规划和改善患者预后至关重要。本研究提出了一种使用光声(PA)成像的新型深度学习(DL)方法,以提高乳腺癌预测的准确性。我们纳入了2022年1月至2024年1月期间来自深圳市人民医院的334例乳腺病变患者。我们的方法采用基于ResNet50的模型并结合注意力机制来分析光声超声(PA-US)图像。实验表明,PAUS-ResAM50模型表现优异,在训练集中的曲线下面积(AUC)为0.917(95%置信区间:0.884 - 0.951),灵敏度为0.750,准确率为0.854,特异性为0.920。在测试集中,该模型保持了高性能,AUC为0.870(95%置信区间:0.778 - 0.962),灵敏度为0.786,特异性为0.872,准确率为0.836。经DeLong检验验证,我们的模型显著优于其他模型,包括PAUS-ResNet50、BMUS-ResAM50和BMUS-ResNet50(所有比较的p值均<0.05)。此外,PAUS-ResAM50模型在不降低灵敏度的情况下提高了放射科医生的诊断特异性,突出了其临床应用潜力。总之,PAUS-ResAM50模型在优化乳腺癌诊断和协助放射科医生早期检测乳腺癌方面显示出巨大的前景。