Qin Yutian, Wu Jingyi, Bulger Eli, Cao Jiaming, Dehghani Hamid, Shinn-Cunningham Barbara, Kainerstorfer Jana M
Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
School of Computer Science, University of Birmingham, B15 2TT, Edgbaston, Birmingham, UK.
Biomed Opt Express. 2024 Jul 29;15(8):4859-4876. doi: 10.1364/BOE.531576. eCollection 2024 Aug 1.
Diffuse optical tomography (DOT) enhances the localization accuracy of neural activity measured with electroencephalography (EEG) while preserving EEG's high temporal resolution. However, the spatial resolution of reconstructed activity diminishes for deeper neural sources. In this study, we analyzed DOT-enhanced EEG localization of neural sources modeled at depths ranging from 11-25 mm in simulations. Our findings reveal systematic biases in reconstructed depth related to DOT channel length. To address this, we developed a data-informed method for selecting DOT channels to improve the spatial accuracy of DOT-enhanced EEG reconstruction. Using our method, the average absolute reconstruction depth errors of DOT reconstruction across all depths are 0.9 ± 0.6 mm, 1.2 ± 0.9 mm, and 1.2 ± 1.1 mm under noiseless, low-level noise, and high-level noise conditions, respectively. In comparison, using fixed channel lengths resulted in errors of 2.6 ± 1.5 mm, 5.0 ± 2.6 mm, and 7.3 ± 4.5 mm under the same conditions. Consequently, our method improved the depth accuracy of DOT reconstructions and facilitated the use of more accurate spatial priors for EEG reconstructions, enhancing the overall precision of the technique.
扩散光学断层扫描(DOT)在保留脑电图(EEG)高时间分辨率的同时,提高了用脑电图测量的神经活动的定位精度。然而,对于更深层的神经源,重建活动的空间分辨率会降低。在本研究中,我们在模拟中分析了DOT增强的EEG对深度范围为11 - 25毫米的神经源的定位。我们的研究结果揭示了与DOT通道长度相关的重建深度的系统偏差。为了解决这个问题,我们开发了一种基于数据的方法来选择DOT通道,以提高DOT增强的EEG重建的空间精度。使用我们的方法,在无噪声、低水平噪声和高水平噪声条件下,DOT重建在所有深度上的平均绝对重建深度误差分别为0.9±0.6毫米、1.2±0.9毫米和1.2±1.1毫米。相比之下,在相同条件下使用固定通道长度会导致误差分别为2.6±1.5毫米、5.0±2.6毫米和7.3±4.5毫米。因此,我们的方法提高了DOT重建的深度精度,并有助于为EEG重建使用更准确的空间先验,提高了该技术的整体精度。