Suppr超能文献

职业安全与健康工程领域中心脏病发作事故工作场所分类模型的提议。

Proposal of a workplace classification model for heart attack accidents from the field of occupational safety and health engineering.

作者信息

Sánchez-Lite Alberto, Fuentes-Bargues Jose Luis, Iglesias Iván, González-Gaya Cristina

机构信息

Department of Materials Science and Metallurgical Engineering, Graphic Expression in Engineering, Cartographic Engineering, Geodesy and Photogrammetry, Mechanical Engineering and Manufacturing Engineering, School of Industrial Engineering, Universidad de Valladolid, P° del Cauce 59, 47011, Valladolid, Spain.

Project Management, Innovation and Sustainability Research Center (PRINS), Universitat Politècnica de València, 46022, Valencia, Spain.

出版信息

Heliyon. 2024 Sep 14;10(18):e37647. doi: 10.1016/j.heliyon.2024.e37647. eCollection 2024 Sep 30.

Abstract

Research on occupational accidents is a key factor in improving working conditions and sustainability. Fatal accidents incur significant human and economic costs. Therefore, it is essential to examine fatal accidents to identify the factors that contribute to their occurrence. This study presents an overview of fatal heart attack accidents at work in Spain over the period 2009-2021. Descriptive analysis was conducted considering 13 variables classified into five groups. These variables were selected as predictors to determine the occurrence of this type of accident using a machine learning technique. Thirteen Naïve Bayes prediction models were developed using an unbalanced dataset of 15,616 valid samples from the Spanish Delta@database, employing a two-stage algorithm. The final model was retained using a General Performance Score index. The model selected for this study used a 70:30 distribution for the training and test datasets. A sample was classified as a fatal heart attack if its posterior probability exceeded 0.25. This model is assumed to be a compromise between the confusion matrix values of each model. Sectors with the highest number of heart attacks are 'Health and social work', 'Transport and storage', 'Manufacturing', and 'Construction'. The incidence of heart attacks and fatal heart attack accidents is higher in men than in women and higher in private sector employees. The findings and model development may assist in the formulation of surveillance strategies and preventive measures to reduce the incidence of heart attacks in the workplace.

摘要

职业事故研究是改善工作条件和可持续性的关键因素。致命事故会带来巨大的人力和经济成本。因此,审视致命事故以确定导致其发生的因素至关重要。本研究概述了2009年至2021年期间西班牙工作场所致命心脏病发作事故。考虑了分为五组的13个变量进行描述性分析。这些变量被选为预测因子,使用机器学习技术来确定此类事故的发生情况。利用来自西班牙Delta@数据库的15616个有效样本的不平衡数据集,采用两阶段算法开发了13个朴素贝叶斯预测模型。使用综合性能得分指数保留最终模型。本研究选择的模型在训练和测试数据集上采用70:30的分布。如果一个样本的后验概率超过0.25,则将其归类为致命心脏病发作。该模型被认为是每个模型的混淆矩阵值之间的一种折衷。心脏病发作次数最多的行业是“卫生和社会工作”、“运输和仓储”、“制造业”和“建筑业”。男性的心脏病发作和致命心脏病发作事故发生率高于女性,私营部门员工的发生率更高。研究结果和模型开发可能有助于制定监测策略和预防措施,以降低工作场所心脏病发作的发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc38/11437862/a612a976dd05/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验