Suppr超能文献

智能森林医院作为医院感染控制的新型管理系统。

Intelligent Forest Hospital as a New Management System for Hospital-Acquired Infection Control.

作者信息

Liu Yingxin, Lin Zhousheng, Lin Guanwen, Lian Wanmin, Tian Junzhang, Li Guowei, Qu Hongying

机构信息

Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou City, Guangdong Province, China.

Medical Department, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou City, Guangdong Province, China.

出版信息

China CDC Wkly. 2024 Sep 13;6(37):972-974. doi: 10.46234/ccdcw2024.201.

Abstract

Hospital-acquired infection (HAI) is a significant global health concern, elevating the risks of morbidity and imposing a substantial socioeconomic burden. To enhance the management of HAI, particularly in the aftermath of the coronavirus disease 2019 (COVID-19) pandemic, the Guangdong Second Provincial General Hospital (GD2H) has launched a new system called Intelligent Forest Hospital (IFH). Leveraging advancements in artificial intelligence, 5G technology, and cloud networking, the IFH implements customized indoor air quality (IAQ) control strategies tailored to different medical settings. It utilizes various intelligent disinfection devices and air purification systems. The IFH features a dynamic 3D hospital model with real-time monitoring of crucial IAQ parameters and a risk assessment ranking for clinical departments, providing timely risk alerts, communication prompts, and automatic disinfection processes. The IFH aims to effectively mitigate HAI post-COVID-19 and other future pandemics, ensuring a safe and pleasant environment for patients, hospital staff, and visitors.

摘要

医院获得性感染(HAI)是一个重大的全球卫生问题,它增加了发病风险并带来了巨大的社会经济负担。为了加强医院获得性感染的管理,特别是在2019年冠状病毒病(COVID-19)大流行之后,广东省第二人民医院(GD2H)推出了一个名为智能森林医院(IFH)的新系统。智能森林医院利用人工智能、5G技术和云网络的进步,针对不同的医疗环境实施定制的室内空气质量(IAQ)控制策略。它使用各种智能消毒设备和空气净化系统。智能森林医院具有一个动态3D医院模型,可实时监测关键的室内空气质量参数,并为临床科室提供风险评估排名,提供及时的风险警报、沟通提示和自动消毒流程。智能森林医院旨在有效减轻COVID-19后及未来其他大流行期间的医院获得性感染,为患者、医院工作人员和访客确保一个安全、舒适的环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e830/11427340/bbe3226b286e/ccdcw-6-37-972-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验