Suppr超能文献

利用生物信息学和机器学习预测与睡眠剥夺相关的铁死亡-铜死亡相关基因的遗传特征。

Using Bioinformatics and Machine Learning to Predict the Genetic Characteristics of Ferroptosis-Cuproptosis-Related Genes Associated with Sleep Deprivation.

作者信息

Wang Liang, Wang Shuo, Tian Chujiao, Zou Tao, Zhao Yunshan, Li Shaodan, Yang Minghui, Chai Ningli

机构信息

Department of Gastroenterology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.

Health Medicine Department, the 955th Hospital of the Army, Changdu, Tibet, 854000, People's Republic of China.

出版信息

Nat Sci Sleep. 2024 Sep 24;16:1497-1513. doi: 10.2147/NSS.S473022. eCollection 2024.

Abstract

PURPOSE

Sleep deprivation (SD), a common sleep disease in clinic, has certain risks, and its pathogenesis is still unclear. This study aimed to identify ferroptosis-cuproptosis-related genes (FCRGs) associated with SD through bioinformatics and machine learning, thus elucidating their biological significance and clinical value.

METHODS

SD-DEGs were obtained from GEO. We intersected key WGCNA module genes of DE-FCRGs with SD-DEGs to obtain SD-DE-FCRGs. GO and KEGG analyses were performed. Machine learning was used to screen SD-DE-FCRGs, and filtered genes were intersected to obtain SD characteristic genes. ROC curves were used to evaluate the accuracy of SD characteristic genes. CIBERSORT was used to analyze the correlation between SD-DE-FCRGs and immune cells. We constructed a ceRNA network of SD-DE-FCRGs and used DGIbd to predict gene drug targets.

RESULTS

The 156 DEGs were identified from GSE98566. Five SD-DE-FCRGs from DE- FCRGs and SD-DEGs were analyzed via WGCNA, and enrichment analysis involved mainly ribosome regulation, mitochondrial pathways, and neurodegenerative diseases. Machine learning was used to obtain Four SD-DE-FCRGs (IKZF1, JCHAIN, MGST3, and UQCR11), and these gene analyses accurately evaluated the distribution model (AUC=0.793). Immune infiltration revealed that SD hub genes were correlated with most immune cells. Unsupervised cluster analysis revealed significant differential expression of immune-related genes between two subtypes. GSVA and GSEA revealed that enriched biological functions included oxidative phosphorylation, ribonucleic acid, metabolic diseases, activation of oxidative phosphorylation, and other pathways. Four SD-DE-FCRGs associated with 29 miRNAs were identified via the construction of a ceRNA network. The important target lenalidomide of IKZF1 was predicted.

CONCLUSION

We first used bioinformatics and machine learning to screen four SD-DE-FCRGs. These genes may affect the involvement of infiltrating immune cells in pathogenesis of SD by regulating FCRGs. We predicted that lenalidomide may target IKZF1 from SD-DE-FCRGs.

摘要

目的

睡眠剥夺(SD)是临床上常见的睡眠疾病,存在一定风险,其发病机制尚不清楚。本研究旨在通过生物信息学和机器学习鉴定与SD相关的铁死亡-铜死亡相关基因(FCRGs),从而阐明其生物学意义和临床价值。

方法

从GEO获取SD差异表达基因(SD-DEGs)。我们将DE-FCRGs的关键加权基因共表达网络分析(WGCNA)模块基因与SD-DEGs进行交集分析,以获得SD-DE-FCRGs。进行基因本体(GO)和京都基因与基因组百科全书(KEGG)分析。使用机器学习筛选SD-DE-FCRGs,并对筛选出的基因进行交集分析以获得SD特征基因。使用受试者工作特征(ROC)曲线评估SD特征基因的准确性。使用CIBERSORT分析SD-DE-FCRGs与免疫细胞之间的相关性。我们构建了SD-DE-FCRGs的竞争性内源性RNA(ceRNA)网络,并使用药物基因相互作用数据库(DGIbd)预测基因药物靶点。

结果

从GSE98566中鉴定出156个差异表达基因。通过WGCNA分析来自DE-FCRGs和SD-DEGs的5个SD-DE-FCRGs,富集分析主要涉及核糖体调控、线粒体途径和神经退行性疾病。使用机器学习获得4个SD-DE-FCRGs(IKZF1、JCHAIN、MGST3和UQCR11),这些基因分析准确评估了分布模型(曲线下面积[AUC]=0.793)。免疫浸润显示SD核心基因与大多数免疫细胞相关。无监督聚类分析显示两种亚型之间免疫相关基因存在显著差异表达。基因集变异分析(GSVA)和基因集富集分析(GSEA)显示富集的生物学功能包括氧化磷酸化、核糖核酸、代谢疾病、氧化磷酸化激活等途径。通过构建ceRNA网络鉴定出与29个微小RNA(miRNA)相关的4个SD-DE-FCRGs。预测了IKZF1的重要靶标来那度胺。

结论

我们首次使用生物信息学和机器学习筛选出4个SD-DE-FCRGs。这些基因可能通过调节FCRGs影响浸润免疫细胞参与SD的发病机制。我们预测来那度胺可能靶向SD-DE-FCRGs中的IKZF1。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5422/11438466/c763bf1d8ffd/NSS-16-1497-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验