Wang Yan, Liu Ying, Wang Nana, Liu Zhiheng, Qian Guanghui, Li Xuan, Huang Hongbiao, Zhuo Wenyu, Xu Lei, Zhang Jiaying, Lv Haitao, Gao Yang
Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.
Department of Cardiology, The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China.
Transl Pediatr. 2024 Aug 31;13(8):1439-1456. doi: 10.21037/tp-24-230. Epub 2024 Aug 26.
Kawasaki disease (KD) is a systemic vasculitis primarily affecting the coronary arteries in children. Despite growing attention to its symptoms and pathogenesis, the exact mechanisms of KD remain unclear. Mitophagy plays a critical role in inflammation regulation, however, its significance in KD has only been minimally explored. This study sought to identify crucial mitophagy-related biomarkers and their mechanisms in KD, focusing on their association with immune cells in peripheral blood.
This research used four datasets from the Gene Expression Omnibus (GEO) database that were categorized as the merged and validation datasets. Screening for differentially expressed mitophagy-related genes (DE-MRGs) was conducted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A weighted gene co-expression network analysis (WGCNA) identified the hub module, while machine-learning algorithms [random forest-recursive feature elimination (RF-RFE) and support vector machine-recursive feature elimination (SVM-RFE)] pinpointed the hub genes. Receiver operating characteristic (ROC) curves were generated for these genes. Additionally, the CIBERSORT algorithm was used to assess the infiltration of 22 immune cell types to explore their correlations with hub genes. Interactions between transcription factors (TFs), genes, and Gene-microRNAs (miRNAs) of hub genes were mapped using the NetworkAnalyst platform. The expression difference of the hub genes was validated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR).
Initially, 306 DE-MRGs were identified between the KD patients and healthy controls. The enrichment analysis linked these MRGs to autophagy, mitochondrial function, and inflammation. The WGCNA revealed a hub module of 47 KD-associated DE-MRGs. The machine-learning algorithms identified cytoskeleton-associated protein 4 () and serine-arginine protein kinase 1 () as critical hub genes. In the merged dataset, the area under the curve (AUC) values for and were 0.933 [95% confidence interval (CI): 0.901 to 0.964] and 0.936 (95% CI: 0.906 to 0.966), respectively, indicating high diagnostic potential. The validation dataset results corroborated these findings with AUC values of 0.872 (95% CI: 0.741 to 1.000) for and 0.878 (95% CI: 0.750 to 1.000) for . The CIBERSORT analysis connected and with specific immune cells, including activated cluster of differentiation 4 (CD4) memory T cells. TFs such as MAZ, SAP30, PHF8, KDM5B, miRNAs like hsa-mir-7-5p play essential roles in regulating these hub genes. The qRT-PCR results confirmed the differential expression of these genes between the KD patients and healthy controls.
and emerged as promising diagnostic biomarkers for KD. These genes potentially influence the progression of KD through mitophagy regulation.
川崎病(KD)是一种主要影响儿童冠状动脉的全身性血管炎。尽管对其症状和发病机制的关注日益增加,但KD的确切机制仍不清楚。线粒体自噬在炎症调节中起关键作用,然而,其在KD中的意义仅得到了极少的探索。本研究旨在确定KD中与线粒体自噬相关的关键生物标志物及其机制,重点关注它们与外周血免疫细胞的关联。
本研究使用了来自基因表达综合数据库(GEO)的四个数据集,分为合并数据集和验证数据集。进行了差异表达的线粒体自噬相关基因(DE-MRG)筛选,随后进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。加权基因共表达网络分析(WGCNA)确定了枢纽模块,而机器学习算法[随机森林递归特征消除(RF-RFE)和支持向量机递归特征消除(SVM-RFE)]确定了枢纽基因。为这些基因生成了受试者工作特征(ROC)曲线。此外,使用CIBERSORT算法评估22种免疫细胞类型的浸润情况,以探索它们与枢纽基因的相关性。使用NetworkAnalyst平台绘制枢纽基因的转录因子(TF)、基因和基因-微小RNA(miRNA)之间的相互作用。使用定量逆转录聚合酶链反应(qRT-PCR)验证枢纽基因的表达差异。
最初,在KD患者和健康对照之间鉴定出306个DE-MRG。富集分析将这些MRG与自噬、线粒体功能和炎症联系起来。WGCNA揭示了一个由47个与KD相关的DE-MRG组成的枢纽模块。机器学习算法确定细胞骨架相关蛋白4( )和丝氨酸-精氨酸蛋白激酶1( )为关键枢纽基因。在合并数据集中, 和 的曲线下面积(AUC)值分别为0.933 [95%置信区间(CI):0.901至0.964]和0.936(95%CI:0.906至0.966),表明具有较高的诊断潜力。验证数据集结果证实了这些发现, 的AUC值为0.872(95%CI:0.741至1.000), 的AUC值为0.878(95%CI:0.750至1.000)。CIBERSORT分析将 和 与特定免疫细胞联系起来,包括活化的分化簇4(CD4)记忆T细胞。MAZ、SAP30、PHF8、KDM5B等TF以及hsa-mir-7-5p等miRNA在调节这些枢纽基因中起重要作用。qRT-PCR结果证实了这些基因在KD患者和健康对照之间的差异表达。
和 成为KD有前景的诊断生物标志物。这些基因可能通过线粒体自噬调节影响KD的进展。