Suppr超能文献

比较肿瘤患者 PICC 置管并发症的预测模型:一项回顾性研究。

Comparative Predictive Modeling for PICC Line Complications in Oncology: A Retrospective Study.

机构信息

Gynaecology Department, Ningbo No.2 Hospital, Ningbo, Zhejiang, China.

Peripherally Inserted Central Catheter Department, Ningbo No.2 Hospital, Ningbo, Zhejiang, China.

出版信息

Br J Hosp Med (Lond). 2024 Sep 30;85(9):1-15. doi: 10.12968/hmed.2024.0176. Epub 2024 Sep 9.

Abstract

Peripherally inserted central catheter (PICC) are increasingly used in cancer treatment, offering significant therapeutic benefits while also posing risks for complications such as infection, thrombosis, and catheter migration. Effective prediction and management of these complications are crucial to optimizing patient outcomes and reducing healthcare costs. This retrospective study analyzed PICC line insertion in 266 cancer patients implemented from January 2019 to December 2023 at a regional healthcare facility in China. Using least absolute shrinkage and selection operator (LASSO) logistic regression, we identified key factors influencing PICC line complications and developed a tailored nomogram for individual risk assessment. The efficacy of the model was compared with support vector machine (SVM), random forest, and gradient boosting machine (GBM) using receiver operating characteristic (ROC) and decision curve analysis (DCA) metrics. Factors such as body mass index (BMI), diabetic status, and age were found to be significant predictors of PICC line complications. The LASSO model demonstrated superior predictive capability (area under the curve, AUC = 0.79) over SVM (AUC = 0.40), random forest (AUC = 0.70), and GBM (AUC = 0.64). A tailored nomogram was developed for clinical use, enabling personalized risk evaluation. The study underscores the utility of LASSO logistic regression in the personalized risk evaluation of PICC line complications, recommending its integration into clinical practice. The tailored nomogram provides a practical tool for clinicians to enhance care customization for patients requiring PICC lines, thereby improving treatment outcomes and patient safety.

摘要

经外周中心静脉置管(PICC)在癌症治疗中应用日益广泛,在带来显著治疗效益的同时,也存在感染、血栓形成和导管迁移等并发症风险。有效预测和管理这些并发症,对于优化患者结局和降低医疗成本至关重要。

本回顾性研究分析了 2019 年 1 月至 2023 年 12 月在中国某地区医疗机构接受 PICC 置管的 266 例癌症患者。采用最小绝对收缩和选择算子(LASSO)逻辑回归,我们确定了影响 PICC 导管并发症的关键因素,并为个体风险评估制定了定制的列线图。采用受试者工作特征(ROC)和决策曲线分析(DCA)指标,比较了模型与支持向量机(SVM)、随机森林(RF)和梯度提升机(GBM)的效能。

BMI、糖尿病状态和年龄等因素被认为是 PICC 导管并发症的重要预测因子。LASSO 模型在预测能力方面优于 SVM(AUC=0.40)、RF(AUC=0.70)和 GBM(AUC=0.64)。为临床应用开发了定制的列线图,以实现个性化风险评估。

本研究突出了 LASSO 逻辑回归在 PICC 导管并发症个体化风险评估中的效用,建议将其纳入临床实践。定制的列线图为临床医生提供了一种实用工具,可增强对需要 PICC 导管患者的护理定制,从而改善治疗结局和患者安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验