Department of Psychology, University of Trier.
Institute of Education, University of Zurich.
J Consult Clin Psychol. 2024 Aug;92(8):517-530. doi: 10.1037/ccp0000862.
To date, many prediction studies in psychotherapy research have used cross-sectional data to predict treatment outcome. The present study used intensive longitudinal assessments and continuous time dynamic modeling (CTDM) to investigate the temporal dynamics of affective states and emotion regulation in the early phase of therapy and their ability to predict treatment outcome.
Ninety-one patients undergoing psychological treatment at a university outpatient clinic took part in a 2-week ecological momentary assessment (EMA) period. Participants answered self-report measures on positive affect (PA), negative affect, and emotion regulation (ER) four times a day. Hierarchical Bayesian CTDM was conducted to identify temporal effects within (autoregressive) and between (cross-regressive) PA, negative affect, and ER. The resulting CTDM parameters, simple EMA parameters (e.g., mean), and cross-sectional predictors were entered into a LASSO model to be examined as predictors of treatment outcome at Session 15.
Two significant predictors were identified: initial impairment and the continuous time cross-effect of PA on ER. The final model explained 40% of variance in treatment outcome, with the cross-effect (PA-ER) accounting for 4% of variance beyond initial impairment.
The results demonstrate that temporal patterns of affective EMA data are valuable for the mapping of individual differences and the prediction of treatment outcome. This information can be used to provide therapists with feedback to personalize treatments. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
迄今为止,许多心理治疗研究中的预测研究都使用横断面数据来预测治疗结果。本研究使用密集的纵向评估和连续时间动态建模(CTDM)来研究治疗早期情感状态和情绪调节的时间动态及其预测治疗结果的能力。
91 名在大学门诊接受心理治疗的患者参加了为期 2 周的生态瞬时评估(EMA)期。参与者每天四次回答关于积极情绪(PA)、消极情绪和情绪调节(ER)的自我报告量表。进行层次贝叶斯 CTDM 以识别 PA、负性情绪和 ER 内(自回归)和之间(交叉回归)的时间效应。由此产生的 CTDM 参数、简单 EMA 参数(例如,平均值)和横断面预测因子被输入 LASSO 模型,以检查其对第 15 次会议治疗结果的预测。
确定了两个重要的预测因子:初始损伤和 PA 对 ER 的连续时间交叉效应。最终模型解释了治疗结果的 40%的变异,PA-ER 的交叉效应占初始损伤之外的 4%的变异。
结果表明,情感 EMA 数据的时间模式对于个体差异的映射和治疗结果的预测是有价值的。这些信息可以用于为治疗师提供反馈,以实现个性化治疗。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。